Publication Date
In 2025 | 1 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 8 |
Descriptor
Source
Grantee Submission | 3 |
Educational and Psychological… | 1 |
Journal of Educational and… | 1 |
Journal of Speech, Language,… | 1 |
Mathematical Thinking and… | 1 |
Review of Educational Research | 1 |
Author
Ahmed Haddadi | 1 |
Baek, Eunkyeng | 1 |
Bartolucci, Francesco | 1 |
Beechey, Timothy | 1 |
Chen, Siqi | 1 |
Christine DiStefano | 1 |
Craig K. Enders | 1 |
David B. Dunson | 1 |
Elena A. Erosheva | 1 |
Fujita, Taro | 1 |
Gongjun Xu | 1 |
More ▼ |
Publication Type
Journal Articles | 6 |
Reports - Research | 6 |
Reports - Descriptive | 2 |
Education Level
Secondary Education | 2 |
Higher Education | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Postsecondary Education | 1 |
Audience
Location
Italy | 1 |
United Kingdom (England) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Tenko Raykov; Ahmed Haddadi; Christine DiStefano; Mohammed Alqabbaa – Educational and Psychological Measurement, 2025
This note is concerned with the study of temporal development in several indices reflecting clustering effects in multilevel designs that are frequently utilized in educational and behavioral research. A latent variable method-based approach is outlined, which can be used to point and interval estimate the growth or decline in important functions…
Descriptors: Multivariate Analysis, Hierarchical Linear Modeling, Educational Research, Statistical Inference
Ting Ye; Ted Westling; Lindsay Page; Luke Keele – Grantee Submission, 2024
The clustered observational study (COS) design is the observational study counterpart to the clustered randomized trial. In a COS, a treatment is assigned to intact groups, and all units within the group are exposed to the treatment. However, the treatment is non-randomly assigned. COSs are common in both education and health services research. In…
Descriptors: Nonparametric Statistics, Identification, Causal Models, Multivariate Analysis
Beechey, Timothy – Journal of Speech, Language, and Hearing Research, 2023
Purpose: This article provides a tutorial introduction to ordinal pattern analysis, a statistical analysis method designed to quantify the extent to which hypotheses of relative change across experimental conditions match observed data at the level of individuals. This method may be a useful addition to familiar parametric statistical methods…
Descriptors: Hypothesis Testing, Multivariate Analysis, Data Analysis, Statistical Inference
Yuqi Gu; Elena A. Erosheva; Gongjun Xu; David B. Dunson – Grantee Submission, 2023
Mixed Membership Models (MMMs) are a popular family of latent structure models for complex multivariate data. Instead of forcing each subject to belong to a single cluster, MMMs incorporate a vector of subject-specific weights characterizing partial membership across clusters. With this flexibility come challenges in uniquely identifying,…
Descriptors: Multivariate Analysis, Item Response Theory, Bayesian Statistics, Models
Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio – Journal of Educational and Behavioral Statistics, 2023
In order to evaluate the effect of a policy or treatment with pre- and post-treatment outcomes, we propose an approach based on a transition model, which may be applied with multivariate outcomes and accounts for unobserved heterogeneity. This model is based on potential versions of discrete latent variables representing the individual…
Descriptors: Causal Models, Multivariate Analysis, Markov Processes, Human Capital
Craig K. Enders – Grantee Submission, 2023
The year 2022 is the 20th anniversary of Joseph Schafer and John Graham's paper titled "Missing data: Our view of the state of the art," currently the most highly cited paper in the history of "Psychological Methods." Much has changed since 2002, as missing data methodologies have continually evolved and improved; the range of…
Descriptors: Data, Research, Theories, Regression (Statistics)
Luo, Wen; Li, Haoran; Baek, Eunkyeng; Chen, Siqi; Lam, Kwok Hap; Semma, Brandie – Review of Educational Research, 2021
Multilevel modeling (MLM) is a statistical technique for analyzing clustered data. Despite its long history, the technique and accompanying computer programs are rapidly evolving. Given the complexity of multilevel models, it is crucial for researchers to provide complete and transparent descriptions of the data, statistical analyses, and results.…
Descriptors: Hierarchical Linear Modeling, Multivariate Analysis, Prediction, Research Problems
Kazak, Sibel; Fujita, Taro; Turmo, Manoli Pifarre – Mathematical Thinking and Learning: An International Journal, 2023
In today's age of information, the use of data is very powerful in making informed decisions. Data analytics is a field that is interested in identifying and interpreting trends and patterns within big data to make data-driven decisions. We focus on informal statistical inference and data modeling as a means of developing students' data analytics…
Descriptors: Statistical Inference, Mathematics Skills, Mathematics Instruction, Secondary School Students