NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gitinabard, Niki; Gao, Zhikai; Heckman, Sarah; Barnes, Tiffany; Lynch, Collin F. – Journal of Educational Data Mining, 2023
Few studies have analyzed students' teamwork (pairwork) habits in programming projects due to the challenges and high cost of analyzing complex, long-term collaborative processes. In this work, we analyze student teamwork data collected from the GitHub platform with the goal of identifying specific pair teamwork styles. This analysis builds on an…
Descriptors: Cooperative Learning, Computer Science Education, Programming, Student Projects
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2022
Knowledge tracing (KT) models are a popular approach for predicting students' future performance at practice problems using their prior attempts. Though many innovations have been made in KT, most models including the state-of-the-art Deep KT (DKT) mainly leverage each student's response either as correct or incorrect, ignoring its content. In…
Descriptors: Programming, Knowledge Level, Prediction, Instructional Innovation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gao, Zhikai; Erickson, Bradley; Xu, Yiqiao; Lynch, Collin; Heckman, Sarah; Barnes, Tiffany – International Educational Data Mining Society, 2022
In computer science education timely help seeking during large programming projects is essential for student success. Help-seeking in typical courses happens in office hours and through online forums. In this research, we analyze students coding activities and help requests to understand the interaction between these activities. We collected…
Descriptors: Computer Science Education, College Students, Programming, Coding
Peer reviewed Peer reviewed
Direct linkDirect link
Marwan, Samiha; Akram, Bita; Barnes, Tiffany; Price, Thomas W. – IEEE Transactions on Learning Technologies, 2022
Theories on learning show that formative feedback that is immediate, specific, corrective, and positive is essential to improve novice students' motivation and learning. However, most prior work on programming feedback focuses on highlighting student's mistakes, or detecting failed test cases after they submit a solution. In this article, we…
Descriptors: Feedback (Response), Formative Evaluation, Programming, Coding
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gao, Zhikai; Erickson, Bradley; Xu, Yiqiao; Lynch, Collin; Heckman, Sarah; Barnes, Tiffany – Journal of Educational Data Mining, 2022
Demand for education in Computer Science has increased markedly in recent years. With increased demand has come to an increased need for student support, especially for courses with large programming projects. Instructors commonly provide online post forums or office hours to address this massive demand for help requests. Identifying what types of…
Descriptors: Computer Science Education, Help Seeking, College Faculty, Teacher Role