Publication Date
| In 2026 | 0 |
| Since 2025 | 18 |
| Since 2022 (last 5 years) | 161 |
Descriptor
| Accuracy | 161 |
| Classification | 152 |
| Artificial Intelligence | 40 |
| Models | 36 |
| Prediction | 29 |
| Comparative Analysis | 26 |
| Foreign Countries | 26 |
| Item Response Theory | 23 |
| Computer Software | 20 |
| Scores | 20 |
| Algorithms | 18 |
| More ▼ | |
Source
Author
| A. Corinne Huggins-Manley | 2 |
| Daniel McNeish | 2 |
| Finch, W. Holmes | 2 |
| Jing Sun | 2 |
| Jonathan Templin | 2 |
| Mangino, Anthony A. | 2 |
| Matthew J. Madison | 2 |
| Mingying Zheng | 2 |
| Rios, Joseph A. | 2 |
| Roark, Casey L. | 2 |
| Sinharay, Sandip | 2 |
| More ▼ | |
Publication Type
Education Level
| Higher Education | 26 |
| Postsecondary Education | 26 |
| Elementary Education | 19 |
| Secondary Education | 12 |
| Early Childhood Education | 11 |
| Primary Education | 11 |
| Grade 3 | 6 |
| Middle Schools | 5 |
| Grade 1 | 4 |
| Junior High Schools | 4 |
| Grade 2 | 3 |
| More ▼ | |
Location
| Turkey | 4 |
| China | 3 |
| Indiana | 2 |
| Kentucky | 2 |
| Massachusetts (Boston) | 2 |
| Michigan | 2 |
| Oregon | 2 |
| Pennsylvania (Philadelphia) | 2 |
| South Korea | 2 |
| Texas | 2 |
| United Kingdom (England) | 2 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Ting Cai; Qingyuan Tang; Yu Xiong; Lu Zhang – International Educational Data Mining Society, 2025
Teacher classroom teaching behavior indicators serve as a crucial foundation for guiding instructional evaluation. Existing indicator system suffers from limitations such as strong subjectivity and weak contextual generalization capabilities. Generalized category discovery (GCD) enables automatic data clustering to identify known categories and…
Descriptors: Teacher Behavior, Teaching Methods, Models, Accuracy
Dustin S. Stoltz; Marshall A. Taylor; Jennifer S. K. Dudley – Sociological Methods & Research, 2025
Distances derived from word embeddings can measure a range of gradational relations--similarity, hierarchy, entailment, and stereotype--and can be used at the document- and author-level in ways that overcome some of the limitations of weighted dictionary methods. We provide a comprehensive introduction to using word embeddings for relation…
Descriptors: Computational Linguistics, Social Science Research, Dictionaries, Research Problems
Matthew C. Lambert; Michael H. Epstein; Douglas Cullinan – Journal of Psychoeducational Assessment, 2025
Research and policy reports estimate that 10%-40% of U.S. children and adolescents currently have or very recently have had at least one significant mental health condition. Students who exhibit substantial behavior and emotional problems in school often show less severe problems when younger. Screening for less severe problems at younger ages can…
Descriptors: Elementary School Students, Screening Tests, Emotional Disturbances, Test Validity
Rui Yao; Meilin Tian; Chi-Un Lei; Dickson K. W. Chiu – Education and Information Technologies, 2024
Sustainable Development Goals (SDG) 4.7 aims to ensure learners acquire the knowledge and skills for promoting sustainable development by 2030. Yet, Open Educational Resources (OERs) that connect the public with SDGs are currently limitedly assigned and insufficient to promote SDG and sustainability education to support the achievement of SDG 4.7…
Descriptors: Sustainable Development, Open Educational Resources, Sustainability, Classification
Su, Hsu-Lin; Chen, Po-Hsi – Educational and Psychological Measurement, 2023
The multidimensional mixture data structure exists in many test (or inventory) conditions. Heterogeneity also relatively exists in populations. Still, some researchers are interested in deciding to which subpopulation a participant belongs according to the participant's factor pattern. Thus, in this study, we proposed three analysis procedures…
Descriptors: Data Analysis, Correlation, Classification, Factor Structure
Caihong Feng; Jingyu Liu; Jianhua Wang; Yunhong Ding; Weidong Ji – Education and Information Technologies, 2025
Student academic performance prediction is a significant area of study in the realm of education that has drawn the interest and investigation of numerous scholars. The current approaches for student academic performance prediction mainly rely on the educational information provided by educational system, ignoring the information on students'…
Descriptors: Academic Achievement, Prediction, Models, Student Behavior
Tae Yeon Kwon; A. Corinne Huggins-Manley; Jonathan Templin; Mingying Zheng – Journal of Educational Measurement, 2024
In classroom assessments, examinees can often answer test items multiple times, resulting in sequential multiple-attempt data. Sequential diagnostic classification models (DCMs) have been developed for such data. As student learning processes may be aligned with a hierarchy of measured traits, this study aimed to develop a sequential hierarchical…
Descriptors: Classification, Accuracy, Student Evaluation, Sequential Approach
Kataoka, Yuki; Taito, Shunsuke; Yamamoto, Norio; So, Ryuhei; Tsutsumi, Yusuke; Anan, Keisuke; Banno, Masahiro; Tsujimoto, Yasushi; Wada, Yoshitaka; Sagami, Shintaro; Tsujimoto, Hiraku; Nihashi, Takashi; Takeuchi, Motoki; Terasawa, Teruhiko; Iguchi, Masahiro; Kumasawa, Junji; Ichikawa, Takumi; Furukawa, Ryuki; Yamabe, Jun; Furukawa, Toshi A. – Research Synthesis Methods, 2023
There are currently no abstract classifiers, which can be used for new diagnostic test accuracy (DTA) systematic reviews to select primary DTA study abstracts from database searches. Our goal was to develop machine-learning-based abstract classifiers for new DTA systematic reviews through an open competition. We prepared a dataset of abstracts…
Descriptors: Competition, Classification, Diagnostic Tests, Accuracy
Senthil Kumaran, V.; Malar, B. – Interactive Learning Environments, 2023
Churn in e-learning refers to learners who gradually perform less and become lethargic and may potentially drop out from the course. Churn prediction is a highly sensitive and critical task in an e-learning system because inaccurate predictions might cause undesired consequences. A lot of approaches proposed in the literature analyzed and modeled…
Descriptors: Electronic Learning, Dropouts, Accuracy, Classification
Uk Hyun Cho – ProQuest LLC, 2024
The present study investigates the influence of multidimensionality on linking and equating in a unidimensional IRT. Two hypothetical multidimensional scenarios are explored under a nonequivalent group common-item equating design. The first scenario examines test forms designed to measure multiple constructs, while the second scenario examines a…
Descriptors: Item Response Theory, Classification, Correlation, Test Format
Hanshu Zhang; Ran Zhou; Cheng-You Cheng; Sheng-Hsu Huang; Ming-Hui Cheng; Cheng-Ta Yang – Cognitive Research: Principles and Implications, 2025
Although it is commonly believed that automation aids human decision-making, conflicting evidence raises questions about whether individuals would gain greater advantages from automation in difficult tasks. Our study examines the combined influence of task difficulty and automation reliability on aided decision-making. We assessed decision…
Descriptors: Task Analysis, Difficulty Level, Decision Making, Automation
Hayat Sahlaoui; El Arbi Abdellaoui Alaoui; Said Agoujil; Anand Nayyar – Education and Information Technologies, 2024
Predicting student performance using educational data is a significant area of machine learning research. However, class imbalance in datasets and the challenge of developing interpretable models can hinder accuracy. This study compares different variations of the Synthetic Minority Oversampling Technique (SMOTE) combined with classification…
Descriptors: Sampling, Classification, Algorithms, Prediction
Gonzalez, Oscar – Educational and Psychological Measurement, 2023
When scores are used to make decisions about respondents, it is of interest to estimate classification accuracy (CA), the probability of making a correct decision, and classification consistency (CC), the probability of making the same decision across two parallel administrations of the measure. Model-based estimates of CA and CC computed from the…
Descriptors: Classification, Accuracy, Intervals, Probability
Sotoudeh, Ramina; DiMaggio, Paul – Sociological Methods & Research, 2023
Sociologists increasingly face choices among competing algorithms that represent reasonable approaches to the same task, with little guidance in choosing among them. We develop a strategy that uses simulated data to identify the conditions under which different methods perform well and applies what is learned from the simulations to predict which…
Descriptors: Algorithms, Simulation, Prediction, Correlation
Gani, Mohammed Osman; Ayyasamy, Ramesh Kumar; Sangodiah, Anbuselvan; Fui, Yong Tien – Education and Information Technologies, 2023
The automated classification of examination questions based on Bloom's Taxonomy (BT) aims to assist the question setters so that high-quality question papers are produced. Most studies to automate this process adopted the machine learning approach, and only a few utilised the deep learning approach. The pre-trained contextual and non-contextual…
Descriptors: Models, Artificial Intelligence, Natural Language Processing, Writing (Composition)

Peer reviewed
Direct link
