Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 8 |
Descriptor
Source
| Grantee Submission | 4 |
| Improving Schools | 1 |
| International Association for… | 1 |
| Society for Research on… | 1 |
| Sociological Methods &… | 1 |
Author
| George Perrett | 2 |
| Vincent Dorie | 2 |
| Adam C. Sales | 1 |
| Allan Jeong | 1 |
| Avi Feller | 1 |
| Benjamin Goodrich | 1 |
| Bixi Zhang | 1 |
| Charlotte Z. Mann | 1 |
| Childs, Joshua | 1 |
| Chris Holmes | 1 |
| Hyoung Seok-Shin | 1 |
| More ▼ | |
Publication Type
| Reports - Research | 6 |
| Journal Articles | 4 |
| Reports - Evaluative | 2 |
| Speeches/Meeting Papers | 2 |
Education Level
| Early Childhood Education | 1 |
| Elementary Education | 1 |
| Higher Education | 1 |
| Kindergarten | 1 |
| Postsecondary Education | 1 |
| Primary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
| Early Childhood Longitudinal… | 1 |
What Works Clearinghouse Rating
Bixi Zhang; Wolfgang Wiedermann – Society for Research on Educational Effectiveness, 2022
Background: Studying causal effects is an important aim in education. Causal relationships indicate how well implements (e.g., interventions) work for the target subjects. A good strategy to get the inference in such relationships is to conduct randomized experiments. However, random assignment is limited in education research, even is discouraged…
Descriptors: Statistical Analysis, Causal Models, Algorithms, Simulation
Charlotte Z. Mann; Adam C. Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2025
Combining observational and experimental data for causal inference can improve treatment effect estimation. However, many observational data sets cannot be released due to data privacy considerations, so one researcher may not have access to both experimental and observational data. Nonetheless, a small amount of risk of disclosing sensitive…
Descriptors: Causal Models, Statistical Analysis, Privacy, Risk
Kearney, Christopher A.; Childs, Joshua – Improving Schools, 2023
School attendance and absenteeism are critical targets of educational policies and practices that often depend heavily on aggregated attendance/absenteeism data. School attendance/absenteeism data in aggregated form, in addition to having suspect quality and utility, minimizes individual student variation, distorts detailed and multilevel…
Descriptors: Data Analysis, Attendance, Educational Policy, Causal Models
Oscar Clivio; Avi Feller; Chris Holmes – Grantee Submission, 2024
Reweighting a distribution to minimize a distance to a target distribution is a powerful and flexible strategy for estimating a wide range of causal effects, but can be challenging in practice because optimal weights typically depend on knowledge of the underlying data generating process. In this paper, we focus on design-based weights, which do…
Descriptors: Evaluation Methods, Causal Models, Error of Measurement, Guidelines
Jennifer Hill; George Perrett; Vincent Dorie – Grantee Submission, 2023
Estimation of causal effects requires making comparisons across groups of observations exposed and not exposed to a a treatment or cause (intervention, program, drug, etc). To interpret differences between groups causally we need to ensure that they have been constructed in such a way that the comparisons are "fair." This can be…
Descriptors: Causal Models, Statistical Inference, Artificial Intelligence, Data Analysis
Vincent Dorie; George Perrett; Jennifer L. Hill; Benjamin Goodrich – Grantee Submission, 2022
A wide range of machine-learning-based approaches have been developed in the past decade, increasing our ability to accurately model nonlinear and nonadditive response surfaces. This has improved performance for inferential tasks such as estimating average treatment effects in situations where standard parametric models may not fit the data well.…
Descriptors: Statistical Inference, Causal Models, Artificial Intelligence, Data Analysis
Allan Jeong; Hyoung Seok-Shin – International Association for Development of the Information Society, 2023
The Jeong (2020) study found that greater use of backward and depth-first processing was associated with higher scores on students' argument maps and that analysis of only the first five nodes students placed in their maps predicted map scores. This study utilized the jMAP tool and algorithms developed in the Jeong (2020) study to determine if the…
Descriptors: Critical Thinking, Learning Strategies, Concept Mapping, Learning Analytics
Quintana, Rafael – Sociological Methods & Research, 2023
Causal search algorithms have been effectively applied in different fields including biology, genetics, climate science, medicine, and neuroscience. However, there have been scant applications of these methods in social and behavioral sciences. This article provides an illustrative example of how causal search algorithms can shed light on…
Descriptors: Academic Achievement, Causal Models, Algorithms, Social Problems

Peer reviewed
Direct link
