NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ersen, Rabia Karatoprak; Lee, Won-Chan – Journal of Educational Measurement, 2023
The purpose of this study was to compare calibration and linking methods for placing pretest item parameter estimates on the item pool scale in a 1-3 computerized multistage adaptive testing design in terms of item parameter recovery. Two models were used: embedded-section, in which pretest items were administered within a separate module, and…
Descriptors: Pretesting, Test Items, Computer Assisted Testing, Adaptive Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Lu; Huang, Yingshi; Li, Shuhang; Chen, Ping – Journal of Educational Measurement, 2023
Online calibration is a key technology for item calibration in computerized adaptive testing (CAT) and has been widely used in various forms of CAT, including unidimensional CAT, multidimensional CAT (MCAT), CAT with polytomously scored items, and cognitive diagnostic CAT. However, as multidimensional and polytomous assessment data become more…
Descriptors: Computer Assisted Testing, Adaptive Testing, Computation, Test Items
Yu Wang – ProQuest LLC, 2024
The multiple-choice (MC) item format has been widely used in educational assessments across diverse content domains. MC items purportedly allow for collecting richer diagnostic information. The effectiveness and economy of administering MC items may have further contributed to their popularity not just in educational assessment. The MC item format…
Descriptors: Multiple Choice Tests, Cognitive Tests, Cognitive Measurement, Educational Diagnosis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sahin Kursad, Merve; Cokluk Bokeoglu, Omay; Cikrikci, Rahime Nukhet – International Journal of Assessment Tools in Education, 2022
Item parameter drift (IPD) is the systematic differentiation of parameter values of items over time due to various reasons. If it occurs in computer adaptive tests (CAT), it causes errors in the estimation of item and ability parameters. Identification of the underlying conditions of this situation in CAT is important for estimating item and…
Descriptors: Item Analysis, Computer Assisted Testing, Test Items, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Kárász, Judit T.; Széll, Krisztián; Takács, Szabolcs – Quality Assurance in Education: An International Perspective, 2023
Purpose: Based on the general formula, which depends on the length and difficulty of the test, the number of respondents and the number of ability levels, this study aims to provide a closed formula for the adaptive tests with medium difficulty (probability of solution is p = 1/2) to determine the accuracy of the parameters for each item and in…
Descriptors: Test Length, Probability, Comparative Analysis, Difficulty Level
Peer reviewed Peer reviewed
Direct linkDirect link
Han, Areum; Krieger, Florian; Borgonovi, Francesca; Greiff, Samuel – Large-scale Assessments in Education, 2023
Process data are becoming more and more popular in education research. In the field of computer-based assessments of collaborative problem solving (ColPS), process data have been used to identify students' test-taking strategies while working on the assessment, and such data can be used to complement data collected on accuracy and overall…
Descriptors: Behavior Patterns, Cooperative Learning, Problem Solving, Reaction Time
Yue Huang – ProQuest LLC, 2023
Automated writing evaluation (AWE) is a cutting-edge technology-based intervention designed to help teachers meet their challenges in writing classrooms and improve students' writing proficiency. The fast development of AWE systems, along with the encouragement of technology use in the U.S. K-12 education system by the Common Core State Standards…
Descriptors: Computer Assisted Testing, Writing Tests, Automation, Writing Evaluation