Publication Date
In 2025 | 4 |
Since 2024 | 27 |
Descriptor
Source
IEEE Transactions on Learning… | 27 |
Author
Andres Neyem | 2 |
Keqin Li | 2 |
Minjuan Wang | 2 |
Andrea Zanellati | 1 |
Baowen Zou | 1 |
Behzad Mirzababaei | 1 |
Bo Jiang | 1 |
Carlos N. Silla | 1 |
Carlos Paredes | 1 |
Chao Zhang | 1 |
Chen Zhan | 1 |
More ▼ |
Publication Type
Journal Articles | 27 |
Reports - Research | 19 |
Reports - Evaluative | 4 |
Reports - Descriptive | 3 |
Information Analyses | 1 |
Education Level
Higher Education | 3 |
Postsecondary Education | 3 |
Audience
Teachers | 1 |
Location
Europe | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Dapeng Qu; Ruiduo Li; Tianqi Yang; Songlin Wu; Yan Pan; Xingwei Wang; Keqin Li – IEEE Transactions on Learning Technologies, 2024
There are many important and interesting academic competitions that attract an increasing number of students. However, traditional student team building methods usually have strong randomness or involve only some first-class students. To choose more suitable students to compose a team and improve students' abilities overall, a competition-oriented…
Descriptors: Competition, Teamwork, Student Behavior, Methods
Oscar Blessed Deho; Lin Liu; Jiuyong Li; Jixue Liu; Chen Zhan; Srecko Joksimovic – IEEE Transactions on Learning Technologies, 2024
Learning analytics (LA), like much of machine learning, assumes the training and test datasets come from the same distribution. Therefore, LA models built on past observations are (implicitly) expected to work well for future observations. However, this assumption does not always hold in practice because the dataset may drift. Recently,…
Descriptors: Learning Analytics, Ethics, Algorithms, Models
Zhenchang Xia; Nan Dong; Jia Wu; Chuanguo Ma – IEEE Transactions on Learning Technologies, 2024
As an excellent means of improving students' effective learning, knowledge tracking can assess the level of knowledge mastery and discover latent learning patterns based on students' historical learning evaluation of related questions. The advantage of knowledge tracking is that it can better organize and adjust students' learning plans, provide…
Descriptors: Graphs, Artificial Intelligence, Multivariate Analysis, Prediction
Pallavi Singh; Phat K. Huynh; Dang Nguyen; Trung Q. Le; Wilfrido Moreno – IEEE Transactions on Learning Technologies, 2025
In organizational and academic settings, the strategic formation of teams is paramount, necessitating an approach that transcends conventional methodologies. This study introduces a novel application of multicriteria integer programming (MCIP), which simultaneously accommodates multiple criteria, thereby innovatively addressing the complex task of…
Descriptors: Teamwork, Group Dynamics, Research Design, Models
Sheng Bi; Zeyi Miao; Qizhi Min – IEEE Transactions on Learning Technologies, 2025
The objective of question generation from knowledge graphs (KGQG) is to create coherent and answerable questions from a given subgraph and a specified answer entity. KGQG has garnered significant attention due to its pivotal role in enhancing online education. Encoder-decoder architectures have advanced traditional KGQG approaches. However, these…
Descriptors: Grammar, Models, Questioning Techniques, Graphs
Andrea Zanellati; Daniele Di Mitri; Maurizio Gabbrielli; Olivia Levrini – IEEE Transactions on Learning Technologies, 2024
Knowledge tracing is a well-known problem in AI for education, consisting of monitoring how the knowledge state of students changes during the learning process and accurately predicting their performance in future exercises. In recent years, many advances have been made thanks to various machine learning and deep learning techniques. Despite their…
Descriptors: Artificial Intelligence, Prior Learning, Knowledge Management, Models
Davi Bernardo Silva; Deborah Ribeiro Carvalho; Carlos N. Silla – IEEE Transactions on Learning Technologies, 2024
Throughout a programming course, students develop various source code tasks. Using these tasks to track students' progress can provide clues to the strengths and weaknesses found in each learning topic. This practice allows the teacher to intervene in learning in the first few weeks of class and maximize student gains. However, the biggest…
Descriptors: Computation, Models, Ability Grouping, Programming
Feng Hsu Wang – IEEE Transactions on Learning Technologies, 2024
Due to the development of deep learning technology, its application in education has received increasing attention from researchers. Intelligent agents based on deep learning technology can perform higher order intellectual tasks than ever. However, the high deployment cost of deep learning models has hindered their widespread application in…
Descriptors: Learning Processes, Models, Man Machine Systems, Cooperative Learning
Xueqiao Zhang; Chao Zhang; Jianwen Sun; Jun Xiao; Yi Yang; Yawei Luo – IEEE Transactions on Learning Technologies, 2025
Large language models (LLMs) have significantly advanced smart education in the artificial general intelligence era. A promising application lies in the automatic generalization of instructional design for curriculum and learning activities, focusing on two key aspects: 1) customized generation: generating niche-targeted teaching content based on…
Descriptors: Artificial Intelligence, Instructional Design, Technology Uses in Education, Cognitive Ability
Shuanghong Shen; Qi Liu; Zhenya Huang; Yonghe Zheng; Minghao Yin; Minjuan Wang; Enhong Chen – IEEE Transactions on Learning Technologies, 2024
Modern online education has the capacity to provide intelligent educational services by automatically analyzing substantial amounts of student behavioral data. Knowledge tracing (KT) is one of the fundamental tasks for student behavioral data analysis, aiming to monitor students' evolving knowledge state during their problem-solving process. In…
Descriptors: Student Behavior, Electronic Learning, Data Analysis, Models
Yu Lu; Deliang Wang; Penghe Chen; Zhi Zhang – IEEE Transactions on Learning Technologies, 2024
Amid the rapid evolution of artificial intelligence (AI), the intricate model structures and opaque decision-making processes of AI-based systems have raised the trustworthy issues in education. We, therefore, first propose a novel three-layer knowledge tracing model designed to address trustworthiness for an intelligent tutoring system. Each…
Descriptors: Models, Intelligent Tutoring Systems, Artificial Intelligence, Technology Uses in Education
Felipe de Morais; Patricia A. Jaques – IEEE Transactions on Learning Technologies, 2024
Emotion detection through sensors is intrusive and expensive, making it impractical for many educational settings. As an alternative, sensor-free affect detection, which relies solely on interaction log data for machine learning models, has been explored. However, sensor-free emotion detectors have not significantly improved performance when…
Descriptors: Psychological Patterns, Personality Traits, Artificial Intelligence, Models
Behzad Mirzababaei; Viktoria Pammer-Schindler – IEEE Transactions on Learning Technologies, 2024
In this article, we investigate a systematic workflow that supports the learning engineering process of formulating the starting question for a conversational module based on existing learning materials, specifying the input that transformer-based language models need to function as classifiers, and specifying the adaptive dialogue structure,…
Descriptors: Learning Processes, Electronic Learning, Artificial Intelligence, Natural Language Processing
Yuang Wei; Bo Jiang – IEEE Transactions on Learning Technologies, 2024
Understanding student cognitive states is essential for assessing human learning. The deep neural networks (DNN)-inspired cognitive state prediction method improved prediction performance significantly; however, the lack of explainability with DNNs and the unitary scoring approach fail to reveal the factors influencing human learning. Identifying…
Descriptors: Cognitive Mapping, Models, Prediction, Short Term Memory
Marc Burchart; Joerg M. Haake – IEEE Transactions on Learning Technologies, 2024
In distance education courses with a large number of students and groups, the organization and facilitation of collaborative writing tasks are challenging. Teachers need support for planning, specification, execution, monitoring, and evaluation of collaborative writing tasks in their course. This requires a collaborative learning platform for…
Descriptors: Writing Instruction, Distance Education, Large Group Instruction, Learning Management Systems
Previous Page | Next Page ยป
Pages: 1 | 2