NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 21 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Feng Hsu Wang – IEEE Transactions on Learning Technologies, 2024
Due to the development of deep learning technology, its application in education has received increasing attention from researchers. Intelligent agents based on deep learning technology can perform higher order intellectual tasks than ever. However, the high deployment cost of deep learning models has hindered their widespread application in…
Descriptors: Learning Processes, Models, Man Machine Systems, Cooperative Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Yufeng Wang; Dehua Ma; Jianhua Ma; Qun Jin – IEEE Transactions on Learning Technologies, 2024
As one of the fundamental tasks in the online learning platform, interactive course recommendation (ICR) aims to maximize the long-term learning efficiency of each student, through actively exploring and exploiting the student's feedbacks, and accordingly conducting personalized course recommendation. Recently, deep reinforcement learning (DRL)…
Descriptors: Electronic Learning, Student Interests, Artificial Intelligence, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Yu Lu; Deliang Wang; Penghe Chen; Zhi Zhang – IEEE Transactions on Learning Technologies, 2024
Amid the rapid evolution of artificial intelligence (AI), the intricate model structures and opaque decision-making processes of AI-based systems have raised the trustworthy issues in education. We, therefore, first propose a novel three-layer knowledge tracing model designed to address trustworthiness for an intelligent tutoring system. Each…
Descriptors: Models, Intelligent Tutoring Systems, Artificial Intelligence, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Milos Ilic; Goran Kekovic; Vladimir Mikic; Katerina Mangaroska; Lazar Kopanja; Boban Vesin – IEEE Transactions on Learning Technologies, 2024
In recent years, there has been an increasing trend of utilizing artificial intelligence (AI) methodologies over traditional statistical methods for predicting student performance in e-learning contexts. Notably, many researchers have adopted AI techniques without conducting a comprehensive investigation into the most appropriate and accurate…
Descriptors: Artificial Intelligence, Academic Achievement, Prediction, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Felipe de Morais; Patricia A. Jaques – IEEE Transactions on Learning Technologies, 2024
Emotion detection through sensors is intrusive and expensive, making it impractical for many educational settings. As an alternative, sensor-free affect detection, which relies solely on interaction log data for machine learning models, has been explored. However, sensor-free emotion detectors have not significantly improved performance when…
Descriptors: Psychological Patterns, Personality Traits, Artificial Intelligence, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Maha Issa; Marwa Faraj; Niveen AbiGhannam – IEEE Transactions on Learning Technologies, 2024
ChatGPT is a newly emerging artificial intelligence (AI) tool that can generate and assess written text. In this study, we aim to examine the extent to which it can correctly identify the structure of literature review sections in engineering research articles. For this purpose, we conducted a manual content analysis by classifying paragraphs of…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Research Reports, Literature Reviews
Peer reviewed Peer reviewed
Direct linkDirect link
A. N. Varnavsky – IEEE Transactions on Learning Technologies, 2024
The most critical parameter of audio and video information output is the playback speed, which affects many viewing or listening metrics, including when learning using tutoring systems. However, the availability of quantitative models for personalized playback speed control considering the learner's personal traits is still an open question. The…
Descriptors: Hierarchical Linear Modeling, Intelligent Tutoring Systems, Individualized Instruction, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Lishan Zhang; Linyu Deng; Sixv Zhang; Ling Chen – IEEE Transactions on Learning Technologies, 2024
With the popularity of online one-to-one tutoring, there are emerging concerns about the quality and effectiveness of this kind of tutoring. Although there are some evaluation methods available, they are heavily relied on manual coding by experts, which is too costly. Therefore, using machine learning to predict instruction quality automatically…
Descriptors: Automation, Classification, Artificial Intelligence, Tutoring
Peer reviewed Peer reviewed
Direct linkDirect link
Lixiang Xu; Zhanlong Wang; Suojuan Zhang; Xin Yuan; Minjuan Wang; Enhong Chen – IEEE Transactions on Learning Technologies, 2024
Knowledge tracing (KT) is an intelligent educational technology used to model students' learning progress and mastery in adaptive learning environments for personalized education. Despite utilizing deep learning models in KT, current approaches often oversimplify students' exercise records into knowledge sequences, which fail to explore the rich…
Descriptors: Knowledge Level, Educational Technology, Intelligent Tutoring Systems, Individualized Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Maximiliano Paredes-Velasco; Isaac Lozano-Osorio; Diana Perez-Marin; Liliana Patricia Santacruz-Valencia – IEEE Transactions on Learning Technologies, 2024
Teaching programming is a topic that has generated a high level of interest among researchers in recent decades. In particular, multiple approaches to teaching visual programming have been explored, from the use of tools such as Scratch, robots, unplugged programming, or activities for the development of computational thinking. Despite the wide…
Descriptors: Visual Aids, Programming, Intelligent Tutoring Systems, Computer Oriented Programs
Peer reviewed Peer reviewed
Direct linkDirect link
Hao Zhou; Wenge Rong; Jianfei Zhang; Qing Sun; Yuanxin Ouyang; Zhang Xiong – IEEE Transactions on Learning Technologies, 2025
Knowledge tracing (KT) aims to predict students' future performances based on their former exercises and additional information in educational settings. KT has received significant attention since it facilitates personalized experiences in educational situations. Simultaneously, the autoregressive (AR) modeling on the sequence of former exercises…
Descriptors: Learning Experience, Academic Achievement, Data, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Andres Neyem; Luis A. Gonzalez; Marcelo Mendoza; Juan Pablo Sandoval Alcocer; Leonardo Centellas; Carlos Paredes – IEEE Transactions on Learning Technologies, 2024
Software assistants have significantly impacted software development for both practitioners and students, particularly in capstone projects. The effectiveness of these tools varies based on their knowledge sources; assistants with localized domain-specific knowledge may have limitations, while tools, such as ChatGPT, using broad datasets, might…
Descriptors: Computer Software, Artificial Intelligence, Intelligent Tutoring Systems, Capstone Experiences
Peer reviewed Peer reviewed
Direct linkDirect link
Liang Zhang; Jionghao Lin; John Sabatini; Conrad Borchers; Daniel Weitekamp; Meng Cao; John Hollander; Xiangen Hu; Arthur C. Graesser – IEEE Transactions on Learning Technologies, 2025
Learning performance data, such as correct or incorrect answers and problem-solving attempts in intelligent tutoring systems (ITSs), facilitate the assessment of knowledge mastery and the delivery of effective instructions. However, these data tend to be highly sparse (80%90% missing observations) in most real-world applications. This data…
Descriptors: Artificial Intelligence, Academic Achievement, Data, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Sirinda Palahan – IEEE Transactions on Learning Technologies, 2025
The rise of online programming education has necessitated more effective personalized interactions, a gap that PythonPal aims to fill through its innovative learning system integrated with a chatbot. This research delves into PythonPal's potential to enhance the online learning experience, especially in contexts with high student-to-teacher ratios…
Descriptors: Programming, Computer Science Education, Artificial Intelligence, Computer Mediated Communication
Peer reviewed Peer reviewed
Direct linkDirect link
Huaiya Liu; Yuyue Zhang; Jiyou Jia – IEEE Transactions on Learning Technologies, 2024
Intelligent tutoring systems (ITSs) aim to deliver personalized learning support to each learner, aligning with the educational aspiration of many countries, including China. ITSs' personalized support is mainly achieved by providing individual prompts to learners when they encounter difficulties in problem-solving. The guiding principles and…
Descriptors: Intelligent Tutoring Systems, Mathematics Achievement, Individualized Instruction, Foreign Countries
Previous Page | Next Page ยป
Pages: 1  |  2