NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 39 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Christian Röver; David Rindskopf; Tim Friede – Research Synthesis Methods, 2024
The trace plot is seldom used in meta-analysis, yet it is a very informative plot. In this article, we define and illustrate what the trace plot is, and discuss why it is important. The Bayesian version of the plot combines the posterior density of [tau], the between-study standard deviation, and the shrunken estimates of the study effects as a…
Descriptors: Graphs, Meta Analysis, Bayesian Statistics, Visualization
Peer reviewed Peer reviewed
Direct linkDirect link
T. D. Stanley; Hristos Doucouliagos; Tomas Havranek – Research Synthesis Methods, 2024
We demonstrate that all meta-analyses of partial correlations are biased, and yet hundreds of meta-analyses of partial correlation coefficients (PCCs) are conducted each year widely across economics, business, education, psychology, and medical research. To address these biases, we offer a new weighted average, UWLS[subscript +3]. UWLS[subscript…
Descriptors: Meta Analysis, Correlation, Bias, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Rrita Zejnullahi; Larry V. Hedges – Research Synthesis Methods, 2024
Conventional random-effects models in meta-analysis rely on large sample approximations instead of exact small sample results. While random-effects methods produce efficient estimates and confidence intervals for the summary effect have correct coverage when the number of studies is sufficiently large, we demonstrate that conventional methods…
Descriptors: Robustness (Statistics), Meta Analysis, Sample Size, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Kollin W. Rott; Gert Bronfort; Haitao Chu; Jared D. Huling; Brent Leininger; Mohammad Hassan Murad; Zhen Wang; James S. Hodges – Research Synthesis Methods, 2024
Meta-analysis is commonly used to combine results from multiple clinical trials, but traditional meta-analysis methods do not refer explicitly to a population of individuals to whom the results apply and it is not clear how to use their results to assess a treatment's effect for a population of interest. We describe recently-introduced causally…
Descriptors: Meta Analysis, Causal Models, Outcomes of Treatment, Medical Research
Peer reviewed Peer reviewed
Direct linkDirect link
Hans-Peter Piepho; Laurence V. Madden; Emlyn R. Williams – Research Synthesis Methods, 2024
Methods of network meta-analysis (NMA) can be classified as arm-based and contrast-based approaches. There are several arm-based approaches, and some of these have been criticized because they recover inter-study information and hence do not obey the principle of concurrent control. Here, we point out that recovery of inter-study information in…
Descriptors: Meta Analysis, Models, Methods, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Stephan B. Bruns; Teshome K. Deressa; T. D. Stanley; Chris Doucouliagos; John P. A. Ioannidis – Research Synthesis Methods, 2024
Using a sample of 70,399 published p-values from 192 meta-analyses, we empirically estimate the counterfactual distribution of p-values in the absence of any biases. Comparing observed p-values with counterfactually expected p-values allows us to estimate how many p-values are published as being statistically significant when they should have been…
Descriptors: Meta Analysis, Research Reports, Research Design, Microeconomics
Peer reviewed Peer reviewed
Direct linkDirect link
Peter J. Godolphin; Nadine Marlin; Chantelle Cornett; David J. Fisher; Jayne F. Tierney; Ian R. White; Ewelina Rogozinska – Research Synthesis Methods, 2024
Individual participant data (IPD) meta-analyses of randomised trials are considered a reliable way to assess participant-level treatment effect modifiers but may not make the best use of the available data. Traditionally, effect modifiers are explored one covariate at a time, which gives rise to the possibility that evidence of treatment-covariate…
Descriptors: Meta Analysis, Randomized Controlled Trials, Statistical Analysis, Participant Characteristics
Peer reviewed Peer reviewed
Direct linkDirect link
Maya B. Mathur – Research Synthesis Methods, 2024
Meta-analyses can be compromised by studies' internal biases (e.g., confounding in nonrandomized studies) as well as publication bias. These biases often operate nonadditively: publication bias that favors significant, positive results selects indirectly for studies with more internal bias. We propose sensitivity analyses that address two…
Descriptors: Meta Analysis, Attribution Theory, Publications, Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Lu Qin; Shishun Zhao; Wenlai Guo; Tiejun Tong; Ke Yang – Research Synthesis Methods, 2024
The application of network meta-analysis is becoming increasingly widespread, and for a successful implementation, it requires that the direct comparison result and the indirect comparison result should be consistent. Because of this, a proper detection of inconsistency is often a key issue in network meta-analysis as whether the results can be…
Descriptors: Meta Analysis, Network Analysis, Bayesian Statistics, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Hans-Peter Piepho; Johannes Forkman; Waqas Ahmed Malik – Research Synthesis Methods, 2024
Checking for possible inconsistency between direct and indirect evidence is an important task in network meta-analysis. Recently, an evidence-splitting (ES) model has been proposed, that allows separating direct and indirect evidence in a network and hence assessing inconsistency. A salient feature of this model is that the variance for…
Descriptors: Maximum Likelihood Statistics, Evidence, Networks, Meta Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Michael Borenstein – Research Synthesis Methods, 2024
In any meta-analysis, it is critically important to report the dispersion in effects as well as the mean effect. If an intervention has a moderate clinical impact "on average" we also need to know if the impact is moderate for all relevant populations, or if it varies from trivial in some to major in others. Or indeed, if the…
Descriptors: Meta Analysis, Error Patterns, Statistical Analysis, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Brinley N. Zabriskie; Nolan Cole; Jacob Baldauf; Craig Decker – Research Synthesis Methods, 2024
Meta-analyses have become the gold standard for synthesizing evidence from multiple clinical trials, and they are especially useful when outcomes are rare or adverse since individual trials often lack sufficient power to detect a treatment effect. However, when zero events are observed in one or both treatment arms in a trial, commonly used…
Descriptors: Meta Analysis, Error Correction, Computation, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Guido Schwarzer; Gerta Rücker; Cristina Semaca – Research Synthesis Methods, 2024
The "LFK" index has been promoted as an improved method to detect bias in meta-analysis. Putatively, its performance does not depend on the number of studies in the meta-analysis. We conducted a simulation study, comparing the "LFK" index test to three standard tests for funnel plot asymmetry in settings with smaller or larger…
Descriptors: Bias, Meta Analysis, Simulation, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Céline Chapelle; Gwénaël Le Teuff; Paul Jacques Zufferey; Silvy Laporte; Edouard Ollier – Research Synthesis Methods, 2024
The number of meta-analyses of aggregate data has dramatically increased due to the facility of obtaining data from publications and the development of free, easy-to-use, and specialised statistical software. Even when meta-analyses include the same studies, their results may vary owing to different methodological choices. Assessment of the…
Descriptors: Meta Analysis, Replication (Evaluation), Data Analysis, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Suzanne C. Freeman; Alex J. Sutton; Nicola J. Cooper; Alessandro Gasparini; Michael J. Crowther; Neil Hawkins – Research Synthesis Methods, 2024
Background: Traditionally, meta-analysis of time-to-event outcomes reports a single pooled hazard ratio assuming proportional hazards (PH). For health technology assessment evaluations, hazard ratios are frequently extrapolated across a lifetime horizon. However, when treatment effects vary over time, an assumption of PH is not always valid. The…
Descriptors: Cancer, Medical Research, Bayesian Statistics, Meta Analysis
Previous Page | Next Page »
Pages: 1  |  2  |  3