Publication Date
In 2025 | 3 |
Since 2024 | 22 |
Descriptor
Evaluation Methods | 22 |
Structural Equation Models | 12 |
Error of Measurement | 10 |
Simulation | 8 |
Monte Carlo Methods | 7 |
Factor Analysis | 6 |
Measurement Techniques | 6 |
Accuracy | 5 |
Correlation | 5 |
Statistical Bias | 5 |
Classification | 4 |
More ▼ |
Source
Structural Equation Modeling:… | 22 |
Author
Ming-Chi Tseng | 2 |
Tenko Raykov | 2 |
Aaron T. McLaughlin | 1 |
Ana Hernández-Dorado | 1 |
Augustin Kelava | 1 |
Bang Quan Zheng | 1 |
Ben Kelcey | 1 |
Bingsheng Zhang | 1 |
Bo Zhang | 1 |
Carl Falk | 1 |
Daniel McNeish | 1 |
More ▼ |
Publication Type
Journal Articles | 22 |
Reports - Research | 17 |
Reports - Descriptive | 3 |
Reports - Evaluative | 2 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Michael Nagel; Lukas Fischer; Tim Pawlowski; Augustin Kelava – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Bayesian estimations of complex regression models with high-dimensional parameter spaces require advanced priors, capable of addressing both sparsity and multicollinearity in the data. The Dirichlet-horseshoe, a new prior distribution that combines and expands on the concepts of the regularized horseshoe and the Dirichlet-Laplace priors, is a…
Descriptors: Bayesian Statistics, Regression (Statistics), Computation, Statistical Distributions
Bo Zhang; Jing Luo; Susu Zhang; Tianjun Sun; Don C. Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Oblique bifactor models, where group factors are allowed to correlate with one another, are commonly used. However, the lack of research on the statistical properties of oblique bifactor models renders the statistical validity of empirical findings questionable. Therefore, the present study took the first step to examine the statistical properties…
Descriptors: Correlation, Predictor Variables, Monte Carlo Methods, Statistical Bias
Russell P. Houpt; Kevin J. Grimm; Aaron T. McLaughlin; Daryl R. Van Tongeren – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Numerous methods exist to determine the optimal number of classes when using latent profile analysis (LPA), but none are consistently correct. Recently, the likelihood incremental percentage per parameter (LI3P) was proposed as a model effect-size measure. To evaluate the LI3P more thoroughly, we simulated 50,000 datasets, manipulating factors…
Descriptors: Structural Equation Models, Profiles, Sample Size, Evaluation Methods
Timothy R. Konold; Elizabeth A. Sanders; Kelvin Afolabi – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Measurement invariance (MI) is an essential part of validity evidence concerned with ensuring that tests function similarly across groups, contexts, and time. Most evaluations of MI involve multigroup confirmatory factor analyses (MGCFA) that assume simple structure. However, recent research has shown that constraining non-target indicators to…
Descriptors: Evaluation Methods, Error of Measurement, Validity, Monte Carlo Methods
Steffen Zitzmann; Lisa Bardach; Kai T. Horstmann; Matthias Ziegler; Martin Hecht – Structural Equation Modeling: A Multidisciplinary Journal, 2024
We investigated three different approaches for quantifying individual change and reporting it back to persons: (a) the common change score, which is obtained by first computing scale scores from two consecutive measurements and then subtract these scores from one another, (b) the ad-hoc approach, which is similar to the former approach but uses…
Descriptors: Personality Change, Personality Measures, Regression (Statistics), Evaluation Methods
Tenko Raykov; Bingsheng Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Multidimensional measuring instruments are often used in behavioral, social, educational, marketing, and biomedical research. For these scales, the paper discusses how to find the optimal score based on their components that is associated with the highest possible reliability. Within the framework of structural equation modeling, an approach to…
Descriptors: Multidimensional Scaling, Measurement Equipment, Measurement Techniques, Test Reliability
Ismail Cuhadar; Ömür Kaya Kalkan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Simulation studies are needed to investigate how many score categories are sufficient to treat ordered categorical data as continuous, particularly for bifactor models. The current simulation study aims to address such needs by investigating the performance of estimation methods in the bifactor models with ordered categorical data. Results support…
Descriptors: Predictor Variables, Structural Equation Models, Sample Size, Evaluation Methods
Leonidas Sakalauskas; Vytautas Dulskis; Darius Plikynas – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Dynamic structural equation models (DSEM) are designed for time series analysis of latent structures. Inherent to the application of DSEM is model parameter estimation, which has to be addressed in many applications by a single time series. In this context, however, the methods currently available either lack estimation quality or are…
Descriptors: Structural Equation Models, Time Management, Predictive Measurement, Data Collection
James Ohisei Uanhoro – Structural Equation Modeling: A Multidisciplinary Journal, 2024
We present a method for Bayesian structural equation modeling of sample correlation matrices as correlation structures. The method transforms the sample correlation matrix to an unbounded vector using the matrix logarithm function. Bayesian inference about the unbounded vector is performed assuming a multivariate-normal likelihood, with a mean…
Descriptors: Bayesian Statistics, Structural Equation Models, Correlation, Monte Carlo Methods
Ming-Chi Tseng – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This study simplifies the seven different cross-lagged panel models (CLPMs) by using the RSEM model for both inter-individual and intra-individual structures. In addition, the study incorporates the newly developed dynamic panel model (DPM), general cross-lagged model (GCLM) and the random intercept auto-regressive moving average (RI-ARMA) model.…
Descriptors: Evaluation Methods, Structural Equation Models, Maximum Likelihood Statistics, Longitudinal Studies
Johan Lyrvall; Zsuzsa Bakk; Jennifer Oser; Roberto Di Mari – Structural Equation Modeling: A Multidisciplinary Journal, 2024
We present a bias-adjusted three-step estimation approach for multilevel latent class models (LC) with covariates. The proposed approach involves (1) fitting a single-level measurement model while ignoring the multilevel structure, (2) assigning units to latent classes, and (3) fitting the multilevel model with the covariates while controlling for…
Descriptors: Hierarchical Linear Modeling, Statistical Bias, Error of Measurement, Simulation
Tenko Raykov – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This note demonstrates that measurement invariance does not guarantee meaningful and valid group comparisons in multiple-population settings. The article follows on a recent critical discussion by Robitzsch and Lüdtke, who argued that measurement invariance was not a pre-requisite for such comparisons. Within the framework of common factor…
Descriptors: Error of Measurement, Prerequisites, Factor Analysis, Evaluation Methods
Pere J. Ferrando; Ana Hernández-Dorado; Urbano Lorenzo-Seva – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A frequent criticism of exploratory factor analysis (EFA) is that it does not allow correlated residuals to be modelled, while they can be routinely specified in the confirmatory (CFA) model. In this article, we propose an EFA approach in which both the common factor solution and the residual matrix are unrestricted (i.e., the correlated residuals…
Descriptors: Correlation, Factor Analysis, Models, Goodness of Fit
Shunji Wang; Katerina M. Marcoulides; Jiashan Tang; Ke-Hai Yuan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A necessary step in applying bi-factor models is to evaluate the need for domain factors with a general factor in place. The conventional null hypothesis testing (NHT) was commonly used for such a purpose. However, the conventional NHT meets challenges when the domain loadings are weak or the sample size is insufficient. This article proposes…
Descriptors: Hypothesis Testing, Error of Measurement, Comparative Analysis, Monte Carlo Methods
Daniel McNeish; Patrick D. Manapat – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A recent review found that 11% of published factor models are hierarchical models with second-order factors. However, dedicated recommendations for evaluating hierarchical model fit have yet to emerge. Traditional benchmarks like RMSEA <0.06 or CFI >0.95 are often consulted, but they were never intended to generalize to hierarchical models.…
Descriptors: Factor Analysis, Goodness of Fit, Hierarchical Linear Modeling, Benchmarking
Previous Page | Next Page »
Pages: 1 | 2