NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Steffen Nestler; Sarah Humberg – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Several variants of the autoregressive structural equation model were suggested over the past years, including, for example, the random intercept autoregressive panel model, the latent curve model with structured residuals, and the STARTS model. The present work shows how to place these models into a mixed-effects model framework and how to…
Descriptors: Structural Equation Models, Computer Software, Models, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Chunhua Cao; Yan Wang; Eunsook Kim – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Multilevel factor mixture modeling (FMM) is a hybrid of multilevel confirmatory factor analysis (CFA) and multilevel latent class analysis (LCA). It allows researchers to examine population heterogeneity at the within level, between level, or both levels. This tutorial focuses on explicating the model specification of multilevel FMM that considers…
Descriptors: Hierarchical Linear Modeling, Factor Analysis, Nonparametric Statistics, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Julia-Kim Walther; Martin Hecht; Steffen Zitzmann – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Small sample sizes pose a severe threat to convergence and accuracy of between-group level parameter estimates in multilevel structural equation modeling (SEM). However, in certain situations, such as pilot studies or when populations are inherently small, increasing samples sizes is not feasible. As a remedy, we propose a two-stage regularized…
Descriptors: Sample Size, Hierarchical Linear Modeling, Structural Equation Models, Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Johan Lyrvall; Zsuzsa Bakk; Jennifer Oser; Roberto Di Mari – Structural Equation Modeling: A Multidisciplinary Journal, 2024
We present a bias-adjusted three-step estimation approach for multilevel latent class models (LC) with covariates. The proposed approach involves (1) fitting a single-level measurement model while ignoring the multilevel structure, (2) assigning units to latent classes, and (3) fitting the multilevel model with the covariates while controlling for…
Descriptors: Hierarchical Linear Modeling, Statistical Bias, Error of Measurement, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Daniel McNeish; Patrick D. Manapat – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A recent review found that 11% of published factor models are hierarchical models with second-order factors. However, dedicated recommendations for evaluating hierarchical model fit have yet to emerge. Traditional benchmarks like RMSEA <0.06 or CFI >0.95 are often consulted, but they were never intended to generalize to hierarchical models.…
Descriptors: Factor Analysis, Goodness of Fit, Hierarchical Linear Modeling, Benchmarking
Peer reviewed Peer reviewed
Direct linkDirect link
Julian F. Lohmann; Steffen Zitzmann; Martin Hecht – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The recently proposed "continuous-time latent curve model with structured residuals" (CT-LCM-SR) addresses several challenges associated with longitudinal data analysis in the behavioral sciences. First, it provides information about process trends and dynamics. Second, using the continuous-time framework, the CT-LCM-SR can handle…
Descriptors: Time Management, Behavioral Science Research, Predictive Validity, Predictor Variables