NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Axel Langner; Lea Sophie Hain; Nicole Graulich – Journal of Chemical Education, 2025
Often, eye-tracking researchers define areas of interest (AOIs) to analyze eye-tracking data. Although AOIs can be defined with systematic methods, researchers in organic chemistry education eye-tracking research often define them manually, as the semantic composition of the stimulus must be considered. Still, defining appropriate AOIs during data…
Descriptors: Organic Chemistry, Science Education, Eye Movements, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Atanu Bhattacharya; Kalyan Dasgupta; Binoy Paine – Journal of Chemical Education, 2024
In this paper, we present a computational chemistry project that demonstrates the quantum dynamics of a free particle, using both classical and quantum computing algorithms. This project can be used in a computational quantum chemistry course in which the instructor introduces quantum computing. Students write their own programs to simulate the…
Descriptors: Chemistry, Science Education, Quantum Mechanics, Computer Science
Peer reviewed Peer reviewed
Direct linkDirect link
Kimberly Vo; Mahbub Sarkar; Paul J. White; Elizabeth Yuriev – Chemistry Education Research and Practice, 2024
Despite problem solving being a core skill in chemistry, students often struggle to solve chemistry problems. This difficulty may arise from students trying to solve problems through memorising algorithms. Goldilocks Help serves as a problem-solving scaffold that supports students through structured problem solving and its elements, such as…
Descriptors: Metacognition, Scaffolding (Teaching Technique), Chemistry, Science Instruction