Publication Date
In 2025 | 5 |
Since 2024 | 28 |
Descriptor
Source
Author
Danielle S. McNamara | 2 |
Ionut Paraschiv | 2 |
Mihai Dascalu | 2 |
Stefan Ruseti | 2 |
Aayesha Zia | 1 |
Adolfo Ruiz-Calleja | 1 |
Agus Wedi | 1 |
Alexander López-Padrón | 1 |
Arthur Bakker | 1 |
Ashish Gurung | 1 |
Ayfer Sayin | 1 |
More ▼ |
Publication Type
Journal Articles | 25 |
Reports - Research | 22 |
Reports - Evaluative | 3 |
Information Analyses | 2 |
Reports - Descriptive | 1 |
Speeches/Meeting Papers | 1 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 4 |
Postsecondary Education | 4 |
Elementary Education | 3 |
Junior High Schools | 2 |
Middle Schools | 2 |
Secondary Education | 2 |
Grade 4 | 1 |
Grade 8 | 1 |
Intermediate Grades | 1 |
Audience
Researchers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Karl Lundengård; Peter Johnson; Phil Ramsden – International Journal for Technology in Mathematics Education, 2024
Formative feedback is important in learning. Automating the provision of specific, objective, constructive feedback to large cohorts requires complex algorithms that most teachers do not have time to develop, suggesting that a community effort is needed to create a library of specialised algorithms. We present an exemplar algorithm for a class of…
Descriptors: Automation, Feedback (Response), Algorithms, Science Education
Pu Wang; Yifeng Lin; Tiesong Zhao – Education and Information Technologies, 2025
With the emergence of Artificial Intelligence (AI), smart education has become an attractive topic. In a smart education system, automated classrooms and examination rooms could help reduce the economic cost of teaching, and thus improve teaching efficiency. However, existing AI algorithms suffer from low surveillance accuracies and high…
Descriptors: Supervision, Artificial Intelligence, Technology Uses in Education, Automation
Guher Gorgun; Okan Bulut – Education and Information Technologies, 2024
In light of the widespread adoption of technology-enhanced learning and assessment platforms, there is a growing demand for innovative, high-quality, and diverse assessment questions. Automatic Question Generation (AQG) has emerged as a valuable solution, enabling educators and assessment developers to efficiently produce a large volume of test…
Descriptors: Computer Assisted Testing, Test Construction, Test Items, Automation
Daniel J. Carragher; Daniel Sturman; Peter J. B. Hancock – Cognitive Research: Principles and Implications, 2024
The human face is commonly used for identity verification. While this task was once exclusively performed by humans, technological advancements have seen automated facial recognition systems (AFRS) integrated into many identification scenarios. Although many state-of-the-art AFRS are exceptionally accurate, they often require human oversight or…
Descriptors: Automation, Human Body, Man Machine Systems, Accuracy
Bin Tan; Hao-Yue Jin; Maria Cutumisu – Computer Science Education, 2024
Background and Context: Computational thinking (CT) has been increasingly added to K-12 curricula, prompting teachers to grade more and more CT artifacts. This has led to a rise in automated CT assessment tools. Objective: This study examines the scope and characteristics of publications that use machine learning (ML) approaches to assess…
Descriptors: Computation, Thinking Skills, Artificial Intelligence, Student Evaluation
Walter Gander – Informatics in Education, 2024
When the new programming language Pascal was developed in the 1970's, Walter Gander did not like it because because many features which he appreciated in prior programming languages were missing in Pascal. For example the block structure was gone, there were no dynamical arrays, no functions or procedures were allowed as parameters of a procedure,…
Descriptors: Computer Software, Programming Languages, Algorithms, Automation
Ulrike Padó; Yunus Eryilmaz; Larissa Kirschner – International Journal of Artificial Intelligence in Education, 2024
Short-Answer Grading (SAG) is a time-consuming task for teachers that automated SAG models have long promised to make easier. However, there are three challenges for their broad-scale adoption: A technical challenge regarding the need for high-quality models, which is exacerbated for languages with fewer resources than English; a usability…
Descriptors: Grading, Automation, Test Format, Computer Assisted Testing
Muhammad Afzaal; Aayesha Zia; Jalal Nouri; Uno Fors – Technology, Knowledge and Learning, 2024
Self-regulated learning is an essential skill that can help students plan, monitor, and reflect on their learning in order to achieve their learning goals. However, in situations where there is a lack of effective feedback and recommendations, it becomes challenging for students to self-regulate their learning. In this paper, we propose an…
Descriptors: Feedback (Response), Artificial Intelligence, Independent Study, Automation
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – International Journal of Artificial Intelligence in Education, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Lishan Zhang; Linyu Deng; Sixv Zhang; Ling Chen – IEEE Transactions on Learning Technologies, 2024
With the popularity of online one-to-one tutoring, there are emerging concerns about the quality and effectiveness of this kind of tutoring. Although there are some evaluation methods available, they are heavily relied on manual coding by experts, which is too costly. Therefore, using machine learning to predict instruction quality automatically…
Descriptors: Automation, Classification, Artificial Intelligence, Tutoring
Kanwal Zahoor; Narmeen Zakaria Bawany – Interactive Learning Environments, 2024
Mobile application developers rely largely on user reviews for identifying issues in mobile applications and meeting the users' expectations. User reviews are unstructured, unorganized and very informal. Identifying and classifying issues by extracting required information from reviews is difficult due to a large number of reviews. To automate the…
Descriptors: Artificial Intelligence, Computer Oriented Programs, Courseware, Learning Processes
Rebeckah K. Fussell; Emily M. Stump; N. G. Holmes – Physical Review Physics Education Research, 2024
Physics education researchers are interested in using the tools of machine learning and natural language processing to make quantitative claims from natural language and text data, such as open-ended responses to survey questions. The aspiration is that this form of machine coding may be more efficient and consistent than human coding, allowing…
Descriptors: Physics, Educational Researchers, Artificial Intelligence, Natural Language Processing
Ayfer Sayin; Mark Gierl – Educational Measurement: Issues and Practice, 2024
The purpose of this study is to introduce and evaluate a method for generating reading comprehension items using template-based automatic item generation. To begin, we describe a new model for generating reading comprehension items called the text analysis cognitive model assessing inferential skills across different reading passages. Next, the…
Descriptors: Algorithms, Reading Comprehension, Item Analysis, Man Machine Systems
Xue Wang; Gaoxiang Luo – Society for Research on Educational Effectiveness, 2024
Background: Despite the usefulness of systematic reviews and meta-analyses, they are time-consuming and labor-intensive (Michelson & Reuter, 2019). The technological advancements in recent years have led to the development of tools aimed at streamlining the processes of systematic reviews and meta-analyses. Innovations such as Paperfetcher…
Descriptors: Meta Analysis, Artificial Intelligence, Computational Linguistics, Computer Software
Previous Page | Next Page »
Pages: 1 | 2