Publication Date
In 2025 | 1 |
Since 2024 | 9 |
Descriptor
Algorithms | 9 |
Bayesian Statistics | 9 |
Accuracy | 6 |
Artificial Intelligence | 4 |
Evaluation Methods | 3 |
Learning Analytics | 3 |
Classification | 2 |
College Students | 2 |
Computation | 2 |
Computer Science Education | 2 |
Data Analysis | 2 |
More ▼ |
Source
Author
A. I. Makinde | 1 |
A. M. Sadek | 1 |
Adolfo Ruiz-Calleja | 1 |
B. A. Ojokoh | 1 |
Chun Wang | 1 |
Dalia Khairy | 1 |
E. O. Ibam | 1 |
Fahad Al-Muhlaki | 1 |
Gongjun Xu | 1 |
Henry Chang | 1 |
Jean-Paul Fox | 1 |
More ▼ |
Publication Type
Journal Articles | 8 |
Reports - Research | 8 |
Reports - Descriptive | 1 |
Education Level
Higher Education | 4 |
Postsecondary Education | 4 |
Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
What Works Clearinghouse Rating
Jean-Paul Fox – Journal of Educational and Behavioral Statistics, 2025
Popular item response theory (IRT) models are considered complex, mainly due to the inclusion of a random factor variable (latent variable). The random factor variable represents the incidental parameter problem since the number of parameters increases when including data of new persons. Therefore, IRT models require a specific estimation method…
Descriptors: Sample Size, Item Response Theory, Accuracy, Bayesian Statistics
A. M. Sadek; Fahad Al-Muhlaki – Measurement: Interdisciplinary Research and Perspectives, 2024
In this study, the accuracy of the artificial neural network (ANN) was assessed considering the uncertainties associated with the randomness of the data and the lack of learning. The Monte-Carlo algorithm was applied to simulate the randomness of the input variables and evaluate the output distribution. It has been shown that under certain…
Descriptors: Monte Carlo Methods, Accuracy, Artificial Intelligence, Guidelines
XinXiu Yang – International Journal of Information and Communication Technology Education, 2024
The objective of this work is to predict the employment rate of students based on the information in the SSM (student status management) in colleges and universities. Firstly, the relevant content of SSM is introduced. Secondly, the BP (Back Propagation) neural network, the LM (Levenberg Marquardt) algorithm, and the BR (Bayesian Regularization)…
Descriptors: Prediction, Employment Patterns, College Students, Algorithms
Taolin Zhang; Shuwen Jia – International Journal of Web-Based Learning and Teaching Technologies, 2024
At present, many schools implement teaching quality evaluation systems with student performance and practical activities as the core data of evaluation. Based on the introduction of the training objectives and discipline nature of the information management and information system specialty, this paper analyzes the construction principles of the…
Descriptors: Student Evaluation of Teacher Performance, Undergraduate Study, Computer Oriented Programs, Algorithms
O. S. Adewale; O. C. Agbonifo; E. O. Ibam; A. I. Makinde; O. K. Boyinbode; B. A. Ojokoh; O. Olabode; M. S. Omirin; S. O. Olatunji – Interactive Learning Environments, 2024
With the advent of technological advancement in learning, such as context-awareness, ubiquity and personalisation, various innovations in teaching and learning have led to improved learning. This research paper aims to develop a system that supports personalised learning through adaptive content, adaptive learning path and context awareness to…
Descriptors: Cognitive Style, Individualized Instruction, Learning Processes, Preferences
Dalia Khairy; Nouf Alharbi; Mohamed A. Amasha; Marwa F. Areed; Salem Alkhalaf; Rania A. Abougalala – Education and Information Technologies, 2024
Student outcomes are of great importance in higher education institutions. Accreditation bodies focus on them as an indicator to measure the performance and effectiveness of the institution. Forecasting students' academic performance is crucial for every educational establishment seeking to enhance performance and perseverance of its students and…
Descriptors: Prediction, Tests, Scores, Information Retrieval
Pankaj Chejara; Luis P. Prieto; Yannis Dimitriadis; Maria Jesus Rodriguez-Triana; Adolfo Ruiz-Calleja; Reet Kasepalu; Shashi Kant Shankar – Journal of Learning Analytics, 2024
Multimodal learning analytics (MMLA) research has shown the feasibility of building automated models of collaboration quality using artificial intelligence (AI) techniques (e.g., supervised machine learning (ML)), thus enabling the development of monitoring and guiding tools for computer-supported collaborative learning (CSCL). However, the…
Descriptors: Learning Analytics, Attribution Theory, Acoustics, Artificial Intelligence
Nesra Yannier; Scott E. Hudson; Henry Chang; Kenneth R. Koedinger – International Journal of Artificial Intelligence in Education, 2024
Adaptivity in advanced learning technologies offer the possibility to adapt to different student backgrounds, which is difficult to do in a traditional classroom setting. However, there are mixed results on the effectiveness of adaptivity based on different implementations and contexts. In this paper, we introduce AI adaptivity in the context of a…
Descriptors: Artificial Intelligence, Computer Software, Feedback (Response), Outcomes of Education
Sainan Xu; Jing Lu; Jiwei Zhang; Chun Wang; Gongjun Xu – Grantee Submission, 2024
With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational…
Descriptors: Educational Assessment, Bayesian Statistics, Statistical Inference, Item Response Theory