Publication Date
In 2025 | 3 |
Since 2024 | 20 |
Descriptor
Algorithms | 20 |
Bias | 20 |
Artificial Intelligence | 13 |
Technology Uses in Education | 7 |
Prediction | 6 |
Barriers | 5 |
Ethics | 5 |
Models | 5 |
Equal Education | 4 |
Accuracy | 3 |
Best Practices | 3 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 17 |
Reports - Research | 10 |
Information Analyses | 4 |
Reports - Descriptive | 3 |
Reports - Evaluative | 2 |
Dissertations/Theses -… | 1 |
Speeches/Meeting Papers | 1 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 5 |
Postsecondary Education | 5 |
Elementary Secondary Education | 1 |
High Schools | 1 |
Secondary Education | 1 |
Two Year Colleges | 1 |
Audience
Researchers | 1 |
Location
Canada | 1 |
South Africa | 1 |
United States | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Jinsook Lee; Yann Hicke; Renzhe Yu; Christopher Brooks; René F. Kizilcec – British Journal of Educational Technology, 2024
Large language models (LLMs) are increasingly adopted in educational contexts to provide personalized support to students and teachers. The unprecedented capacity of LLM-based applications to understand and generate natural language can potentially improve instructional effectiveness and learning outcomes, but the integration of LLMs in education…
Descriptors: Artificial Intelligence, Technology Uses in Education, Equal Education, Algorithms
Kylie L. Anglin – Annenberg Institute for School Reform at Brown University, 2025
Since 2018, institutions of higher education have been aware of the "enrollment cliff" which refers to expected declines in future enrollment. This paper attempts to describe how prepared institutions in Ohio are for this future by looking at trends leading up to the anticipated decline. Using IPEDS data from 2012-2022, we analyze trends…
Descriptors: Validity, Artificial Intelligence, Models, Best Practices
Rachel Moylan; Jillianne Code – Teachers and Teaching: Theory and Practice, 2024
Algorithmic systems shape every aspect of our daily lives and impact our perceptions of the world. The ubiquity and profound impact of algorithms mean that algorithm literacy--awareness and knowledge of algorithm use, and the ability to evaluate algorithms critically and exercise agency when engaging with algorithmic systems--is a vital competence…
Descriptors: Algorithms, Teacher Competencies, Digital Literacy, Knowledge Level
Marie K. Heath; Daniel G. Krutka; Benjamin Gleason – Information and Learning Sciences, 2024
Purpose: This paper aims to consider the role of social media platforms as educational technologies given growing evidence of harms to democracy, society and individuals, particularly through logics of efficiency, racism, misogyny and surveillance inextricably designed into the architectural and algorithmic bones of social media. The paper aims to…
Descriptors: Social Media, Educational Technology, Role Theory, Influence of Technology
Kylie Anglin – AERA Open, 2024
Given the rapid adoption of machine learning methods by education researchers, and the growing acknowledgment of their inherent risks, there is an urgent need for tailored methodological guidance on how to improve and evaluate the validity of inferences drawn from these methods. Drawing on an integrative literature review and extending a…
Descriptors: Validity, Artificial Intelligence, Models, Best Practices
Youmi Suk; Kyung T. Han – Journal of Educational and Behavioral Statistics, 2024
As algorithmic decision making is increasingly deployed in every walk of life, many researchers have raised concerns about fairness-related bias from such algorithms. But there is little research on harnessing psychometric methods to uncover potential discriminatory bias inside decision-making algorithms. The main goal of this article is to…
Descriptors: Psychometrics, Ethics, Decision Making, Algorithms
Poornesh M. – Clearing House: A Journal of Educational Strategies, Issues and Ideas, 2024
The global pandemic has brought about significant changes in education, which have led to concerns regarding fairness and accessibility in a technology-driven learning environment. This article focuses on the use of Artificial Intelligence (AI) in education and examines the potential for bias in AI-powered tools. By using the example of a…
Descriptors: Artificial Intelligence, Bias, Algorithms, Social Justice
Melina Verger; Chunyang Fan; Sébastien Lallé; François Bouchet; Vanda Luengo – Journal of Educational Data Mining, 2024
Predictive student models are increasingly used in learning environments due to their ability to enhance educational outcomes and support stakeholders in making informed decisions. However, predictive models can be biased and produce unfair outcomes, leading to potential discrimination against certain individuals and harmful long-term…
Descriptors: Algorithms, Prediction, Bias, Classification
Haijing Tu – Journal on Excellence in College Teaching, 2024
This article explores the efficacy of AI used for teaching and learning tools. First, it examines three critical aspects of AI use in teaching and learning: AI complexity, algorithmic transparency, and AI bias. Second, it reviews recent literature that investigates the benefits and challenges of implementing AI within college classrooms. It…
Descriptors: Technology Uses in Education, Artificial Intelligence, College Instruction, Instructional Effectiveness
Mathilde Léon; Shoba S. Meera; Anne-Caroline Fiévet; Alejandrina Cristia – Research Ethics, 2024
The last decade has seen a rise in big data approaches, including in the humanities, whereby large quantities of data are collected and analysed. In this paper, we discuss long-form audio recordings that result from individuals wearing a recording device for many hours. Linguists, psychologists and anthropologists can use them, for example, to…
Descriptors: Foreign Countries, Developing Nations, Data Collection, Audio Equipment
Kelli A. Bird; Benjamin L. Castleman; Yifeng Song – Journal of Policy Analysis and Management, 2025
Predictive analytics are increasingly pervasive in higher education. However, algorithmic bias has the potential to reinforce racial inequities in postsecondary success. We provide a comprehensive and translational investigation of algorithmic bias in two separate prediction models--one predicting course completion, the second predicting degree…
Descriptors: Algorithms, Technology Uses in Education, Bias, Racism
Kayode Oyetade; Tranos Zuva – Educational Process: International Journal, 2025
Background/purpose: The integration of artificial intelligence (AI) in education has the potential to address inequalities and enhance teaching and learning outcomes. However, challenges such as AI biases, limited teacher literacy, and resource constraints hinder equitable implementation, especially in contexts like South Africa. This study…
Descriptors: Artificial Intelligence, Educational Technology, Technology Uses in Education, Equal Education
Richard A. Berk; Arun Kumar Kuchibhotla; Eric Tchetgen Tchetgen – Sociological Methods & Research, 2024
In the United States and elsewhere, risk assessment algorithms are being used to help inform criminal justice decision-makers. A common intent is to forecast an offender's "future dangerousness." Such algorithms have been correctly criticized for potential unfairness, and there is an active cottage industry trying to make repairs. In…
Descriptors: Criminals, Correctional Rehabilitation, Recidivism, Risk Assessment
Karen E. B. Elliott – ProQuest LLC, 2024
When the purpose and meaning of grades is not well-defined by an organization, there is a disconnect between curricular/assessment practices and student engagement. This study sought to investigate origins and find solutions in regards to discerning a student's knowledge and mastery of a subject and how this is reflected in the grade, and how…
Descriptors: Curriculum Based Assessment, Grading, Disclosure, Grades (Scholastic)
Madeline Day Price; Erin Smith; R. Alex Smith – International Journal of Education in Mathematics, Science and Technology, 2024
Storylines exist about the types of learners who participate and excel in mathematics. To understand how AI chatbots participate in such storylines, we examined ChatGPT's feedback to different learners' mathematical writing in an exploratory study. Learners included academic labels, like gifted and special education, and race/ethnicity, like Black…
Descriptors: Mathematics Education, Artificial Intelligence, Story Telling, Student Characteristics
Previous Page | Next Page »
Pages: 1 | 2