Publication Date
In 2025 | 0 |
Since 2024 | 8 |
Descriptor
Computation | 8 |
Statistical Distributions | 8 |
Data Analysis | 3 |
Mathematical Formulas | 3 |
Probability | 3 |
Simulation | 3 |
Structural Equation Models | 3 |
Accuracy | 2 |
Bayesian Statistics | 2 |
Error of Measurement | 2 |
Evaluation Methods | 2 |
More ▼ |
Source
Structural Equation Modeling:… | 3 |
Grantee Submission | 2 |
Educational Studies in… | 1 |
Journal of Experimental… | 1 |
Measurement:… | 1 |
Author
Ke-Hai Yuan | 2 |
Ling Ling | 2 |
Zhiyong Zhang | 2 |
Abdul Haq | 1 |
Augustin Kelava | 1 |
Daniel Seddig | 1 |
Dongho Shin | 1 |
Ernesto Sánchez | 1 |
Francisco Sepúlveda | 1 |
John Mart V. DelosReyes | 1 |
Lukas Fischer | 1 |
More ▼ |
Publication Type
Journal Articles | 7 |
Reports - Research | 7 |
Dissertations/Theses -… | 1 |
Education Level
High Schools | 1 |
Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Michael Nagel; Lukas Fischer; Tim Pawlowski; Augustin Kelava – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Bayesian estimations of complex regression models with high-dimensional parameter spaces require advanced priors, capable of addressing both sparsity and multicollinearity in the data. The Dirichlet-horseshoe, a new prior distribution that combines and expands on the concepts of the regularized horseshoe and the Dirichlet-Laplace priors, is a…
Descriptors: Bayesian Statistics, Regression (Statistics), Computation, Statistical Distributions
John Mart V. DelosReyes; Miguel A. Padilla – Journal of Experimental Education, 2024
Estimating confidence intervals (CIs) for the correlation has been a challenge because the correlation sampling distribution changes depending on the correlation magnitude. The Fisher z-transformation was one of the first attempts at estimating correlation CIs but has historically shown to not have acceptable coverage probability if data were…
Descriptors: Research Problems, Correlation, Intervals, Computation
Abdul Haq – Measurement: Interdisciplinary Research and Perspectives, 2024
This article introduces an innovative sampling scheme, the median sampling (MS), utilizing individual observations over time to efficiently estimate the mean of a process characterized by a symmetric (non-uniform) probability distribution. The mean estimator based on MS is not only unbiased but also boasts enhanced precision compared to its simple…
Descriptors: Sampling, Innovation, Computation, Probability
Daniel Seddig – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The latent growth model (LGM) is a popular tool in the social and behavioral sciences to study development processes of continuous and discrete outcome variables. A special case are frequency measurements of behaviors or events, such as doctor visits per month or crimes committed per year. Probability distributions for such outcomes include the…
Descriptors: Growth Models, Statistical Analysis, Structural Equation Models, Crime
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Grantee Submission, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement

Dongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
Ernesto Sánchez; Victor Nozair García-Ríos; Francisco Sepúlveda – Educational Studies in Mathematics, 2024
Sampling distributions are fundamental for statistical inference, yet their abstract nature poses challenges for students. This research investigates the development of high school students' conceptions of sampling distribution through informal significance tests with the aid of digital technology. The study focuses on how technological tools…
Descriptors: High School Students, Concept Formation, Thinking Skills, Skill Development