Publication Date
In 2025 | 0 |
Since 2024 | 9 |
Descriptor
Computation | 9 |
Statistical Inference | 9 |
Causal Models | 4 |
Probability | 3 |
Accuracy | 2 |
Data Analysis | 2 |
Evaluation Methods | 2 |
Generalization | 2 |
Randomized Controlled Trials | 2 |
Regression (Statistics) | 2 |
Research Design | 2 |
More ▼ |
Source
Grantee Submission | 4 |
Society for Research on… | 2 |
Asia Pacific Education Review | 1 |
Educational Studies in… | 1 |
Evaluation Review | 1 |
Author
Adam Sales | 1 |
Adelle K. Sturgell | 1 |
Avi Feller | 1 |
Ben B. Hansen | 1 |
Chun Wang | 1 |
David A. Klingbeil | 1 |
David Bruns-Smith | 1 |
Duy Pham | 1 |
Elizabeth L. Ogburn | 1 |
Ernesto Sánchez | 1 |
Ethan R. Van Norman | 1 |
More ▼ |
Publication Type
Reports - Research | 8 |
Journal Articles | 4 |
Reports - Descriptive | 1 |
Education Level
Secondary Education | 2 |
High Schools | 1 |
Audience
Location
Massachusetts (Boston) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
What Works Clearinghouse Rating
Sarah Narvaiz; Qinyun Lin; Joshua M. Rosenberg; Kenneth A. Frank; Spiro J. Maroulis; Wei Wang; Ran Xu – Grantee Submission, 2024
Sensitivity analysis, a statistical method crucial for validating inferences across disciplines, quantifies the conditions that could alter conclusions (Razavi et al., 2021). One line of work is rooted in linear models and foregrounds the sensitivity of inferences to the strength of omitted variables (Cinelli & Hazlett, 2019; Frank, 2000). A…
Descriptors: Statistical Analysis, Computer Software, Robustness (Statistics), Statistical Inference
Wendy Chan – Asia Pacific Education Review, 2024
As evidence from evaluation and experimental studies continue to influence decision and policymaking, applied researchers and practitioners require tools to derive valid and credible inferences. Over the past several decades, research in causal inference has progressed with the development and application of propensity scores. Since their…
Descriptors: Probability, Scores, Causal Models, Statistical Inference
David Bruns-Smith; Oliver Dukes; Avi Feller; Elizabeth L. Ogburn – Grantee Submission, 2024
We provide a novel characterization of augmented balancing weights, also known as automatic debiased machine learning (AutoDML). These popular "doubly robust" or "de-biased machine learning estimators" combine outcome modeling with balancing weights -- weights that achieve covariate balance directly in lieu of estimating and…
Descriptors: Regression (Statistics), Weighted Scores, Data Analysis, Robustness (Statistics)
Xinhe Wang; Ben B. Hansen – Society for Research on Educational Effectiveness, 2024
Background: Clustered randomized controlled trials are commonly used to evaluate the effectiveness of treatments. Frequently, stratified or paired designs are adopted in practice. Fogarty (2018) studied variance estimators for stratified and not clustered experiments and Schochet et. al. (2022) studied that for stratified, clustered RCTs with…
Descriptors: Causal Models, Randomized Controlled Trials, Computation, Probability
Ethan R. Van Norman; David A. Klingbeil; Adelle K. Sturgell – Grantee Submission, 2024
Single-case experimental designs (SCEDs) have been used with increasing frequency to identify evidence-based interventions in education. The purpose of this study was to explore how several procedural characteristics, including within-phase variability (i.e., measurement error), number of baseline observations, and number of intervention…
Descriptors: Research Design, Case Studies, Effect Size, Error of Measurement
Sarah E. Robertson; Jon A. Steingrimsson; Issa J. Dahabreh – Evaluation Review, 2024
When planning a cluster randomized trial, evaluators often have access to an enumerated cohort representing the target population of clusters. Practicalities of conducting the trial, such as the need to oversample clusters with certain characteristics in order to improve trial economy or support inferences about subgroups of clusters, may preclude…
Descriptors: Randomized Controlled Trials, Generalization, Inferences, Hierarchical Linear Modeling
Duy Pham; Kirk Vanacore; Adam Sales; Johann Gagnon-Bartsch – Society for Research on Educational Effectiveness, 2024
Background: Education researchers typically estimate average program effects with regression; if they are interested in heterogeneous effects, they include an interaction in the model. Such models quantify and infer the influences of each covariate on the effect via interaction coefficients and their associated p-values or confidence intervals.…
Descriptors: Educational Research, Educational Researchers, Regression (Statistics), Artificial Intelligence
Sainan Xu; Jing Lu; Jiwei Zhang; Chun Wang; Gongjun Xu – Grantee Submission, 2024
With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational…
Descriptors: Educational Assessment, Bayesian Statistics, Statistical Inference, Item Response Theory
Ernesto Sánchez; Victor Nozair García-Ríos; Francisco Sepúlveda – Educational Studies in Mathematics, 2024
Sampling distributions are fundamental for statistical inference, yet their abstract nature poses challenges for students. This research investigates the development of high school students' conceptions of sampling distribution through informal significance tests with the aid of digital technology. The study focuses on how technological tools…
Descriptors: High School Students, Concept Formation, Thinking Skills, Skill Development