NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20253
Since 202417
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Po-Chun Huang; Ying-Hong Chan; Ching-Yu Yang; Hung-Yuan Chen; Yao-Chung Fan – IEEE Transactions on Learning Technologies, 2024
Question generation (QG) task plays a crucial role in adaptive learning. While significant QG performance advancements are reported, the existing QG studies are still far from practical usage. One point that needs strengthening is to consider the generation of question group, which remains untouched. For forming a question group, intrafactors…
Descriptors: Automation, Test Items, Computer Assisted Testing, Test Construction
Peer reviewed Peer reviewed
Direct linkDirect link
Semere Kiros Bitew; Amir Hadifar; Lucas Sterckx; Johannes Deleu; Chris Develder; Thomas Demeester – IEEE Transactions on Learning Technologies, 2024
Multiple-choice questions (MCQs) are widely used in digital learning systems, as they allow for automating the assessment process. However, owing to the increased digital literacy of students and the advent of social media platforms, MCQ tests are widely shared online, and teachers are continuously challenged to create new questions, which is an…
Descriptors: Multiple Choice Tests, Computer Assisted Testing, Test Construction, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Peer reviewed Peer reviewed
Direct linkDirect link
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – International Journal of Artificial Intelligence in Education, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Peer reviewed Peer reviewed
Direct linkDirect link
Sami Baral; Eamon Worden; Wen-Chiang Lim; Zhuang Luo; Christopher Santorelli; Ashish Gurung; Neil Heffernan – Grantee Submission, 2024
The effectiveness of feedback in enhancing learning outcomes is well documented within Educational Data Mining (EDM). Various prior research have explored methodologies to enhance the effectiveness of feedback to students in various ways. Recent developments in Large Language Models (LLMs) have extended their utility in enhancing automated…
Descriptors: Automation, Scoring, Computer Assisted Testing, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Lae Lae Shwe; Sureena Matayong; Suntorn Witosurapot – Education and Information Technologies, 2024
Multiple Choice Questions (MCQs) are an important evaluation technique for both examinations and learning activities. However, the manual creation of questions is time-consuming and challenging for teachers. Hence, there is a notable demand for an Automatic Question Generation (AQG) system. Several systems have been created for this aim, but the…
Descriptors: Difficulty Level, Computer Assisted Testing, Adaptive Testing, Multiple Choice Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Urrutia, Felipe; Araya, Roberto – Journal of Educational Computing Research, 2024
Written answers to open-ended questions can have a higher long-term effect on learning than multiple-choice questions. However, it is critical that teachers immediately review the answers, and ask to redo those that are incoherent. This can be a difficult task and can be time-consuming for teachers. A possible solution is to automate the detection…
Descriptors: Elementary School Students, Grade 4, Elementary School Mathematics, Mathematics Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Dan Song; Alexander F. Tang – Language Learning & Technology, 2025
While many studies have addressed the benefits of technology-assisted L2 writing, limited research has delved into how generative artificial intelligence (GAI) supports students in completing their writing tasks in Mandarin Chinese. In this study, 26 university-level Mandarin Chinese foreign language students completed two writing tasks on two…
Descriptors: Artificial Intelligence, Second Language Learning, Standardized Tests, Writing Tests
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shahid A. Choudhry; Timothy J. Muckle; Christopher J. Gill; Rajat Chadha; Magnus Urosev; Matt Ferris; John C. Preston – Practical Assessment, Research & Evaluation, 2024
The National Board of Certification and Recertification for Nurse Anesthetists (NBCRNA) conducted a one-year research study comparing performance on the traditional continued professional certification assessment, administered at a test center or online with remote proctoring, to a longitudinal assessment that required answering quarterly…
Descriptors: Nurses, Certification, Licensing Examinations (Professions), Computer Assisted Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Keith Cochran; Clayton Cohn; Peter Hastings; Noriko Tomuro; Simon Hughes – International Journal of Artificial Intelligence in Education, 2024
To succeed in the information age, students need to learn to communicate their understanding of complex topics effectively. This is reflected in both educational standards and standardized tests. To improve their writing ability for highly structured domains like scientific explanations, students need feedback that accurately reflects the…
Descriptors: Science Process Skills, Scientific Literacy, Scientific Concepts, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Yishen Song; Qianta Zhu; Huaibo Wang; Qinhua Zheng – IEEE Transactions on Learning Technologies, 2024
Manually scoring and revising student essays has long been a time-consuming task for educators. With the rise of natural language processing techniques, automated essay scoring (AES) and automated essay revising (AER) have emerged to alleviate this burden. However, current AES and AER models require large amounts of training data and lack…
Descriptors: Scoring, Essays, Writing Evaluation, Computer Software
Hong Jiao, Editor; Robert W. Lissitz, Editor – IAP - Information Age Publishing, Inc., 2024
With the exponential increase of digital assessment, different types of data in addition to item responses become available in the measurement process. One of the salient features in digital assessment is that process data can be easily collected. This non-conventional structured or unstructured data source may bring new perspectives to better…
Descriptors: Artificial Intelligence, Natural Language Processing, Psychometrics, Computer Assisted Testing
Yi Gui – ProQuest LLC, 2024
This study explores using transfer learning in machine learning for natural language processing (NLP) to create generic automated essay scoring (AES) models, providing instant online scoring for statewide writing assessments in K-12 education. The goal is to develop an instant online scorer that is generalizable to any prompt, addressing the…
Descriptors: Writing Tests, Natural Language Processing, Writing Evaluation, Scoring
Peer reviewed Peer reviewed
Direct linkDirect link
Alexander Stanoyevitch – Discover Education, 2024
Online education, while not a new phenomenon, underwent a monumental shift during the COVID-19 pandemic, pushing educators and students alike into the uncharted waters of full-time digital learning. With this shift came renewed concerns about the integrity of online assessments. Amidst a landscape rapidly being reshaped by online exam/homework…
Descriptors: Computer Assisted Testing, Student Evaluation, Artificial Intelligence, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Naveed Saif; Sadaqat Ali; Abner Rubin; Soliman Aljarboa; Nabil Sharaf Almalki; Mrim M. Alnfiai; Faheem Khan; Sajid Ullah Khan – Educational Technology & Society, 2025
In the swiftly evolving landscape of education, the fusion of Artificial Intelligence's ingenuity with the dynamic capabilities of chat-bot technology has ignited a transformative paradigm shift. This convergence is not merely a technological integration but a profound reshaping of the fundamental principles of pedagogy, fundamentally redefining…
Descriptors: Artificial Intelligence, Technology Uses in Education, Readiness, Technological Literacy
Previous Page | Next Page ยป
Pages: 1  |  2