NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Peer reviewed Peer reviewed
Direct linkDirect link
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – International Journal of Artificial Intelligence in Education, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Peer reviewed Peer reviewed
Direct linkDirect link
Dania Bilal; Li-Min Cassandra Huang – Information and Learning Sciences, 2025
Purpose: This paper aims to investigate user voice-switching behavior in voice assistants (VAs), embodiments and perceived trust in information accuracy, usefulness and intelligence. The authors addressed four research questions: RQ1. What is the nature of users' voice-switching behavior in VAs? RQ2: What are user preferences for embodied voice…
Descriptors: Undergraduate Students, Artificial Intelligence, Natural Language Processing, Information Retrieval
Peer reviewed Peer reviewed
Direct linkDirect link
Haerim Hwang; Hyunwoo Kim – Language Testing, 2024
Given the lack of computational tools available for assessing second language (L2) production in Korean, this study introduces a novel automated tool called the Korean Syntactic Complexity Analyzer (KOSCA) for measuring syntactic complexity in L2 Korean production. As an open-source graphic user interface (GUI) developed in Python, KOSCA provides…
Descriptors: Korean, Natural Language Processing, Syntax, Computer Graphics