NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 202510
Since 202436
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 36 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Joachim Schwarz – Teaching Statistics: An International Journal for Teachers, 2025
This study explores the use of generative AI, specifically ChatGPT, in statistical data analysis and its implications for statistics education at universities of applied sciences. This paper begins with first discussing the future division of labor between humans and machines in the context of statistical data analyses following the widespread…
Descriptors: Statistics Education, Artificial Intelligence, Computer Software, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Sean McGrath; XiaoFei Zhao; Omer Ozturk; Stephan Katzenschlager; Russell Steele; Andrea Benedetti – Research Synthesis Methods, 2024
When performing an aggregate data meta-analysis of a continuous outcome, researchers often come across primary studies that report the sample median of the outcome. However, standard meta-analytic methods typically cannot be directly applied in this setting. In recent years, there has been substantial development in statistical methods to…
Descriptors: Statistical Analysis, Meta Analysis, Data Analysis, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Austin Wyman; Zhiyong Zhang – Grantee Submission, 2025
Automated detection of facial emotions has been an interesting topic for multiple decades in social and behavioral research but is only possible very recently. In this tutorial, we review three popular artificial intelligence based emotion detection programs that are accessible to R programmers: Google Cloud Vision, Amazon Rekognition, and…
Descriptors: Artificial Intelligence, Algorithms, Computer Software, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Lennert J. Groot; Kees-Jan Kan; Suzanne Jak – Research Synthesis Methods, 2024
Researchers may have at their disposal the raw data of the studies they wish to meta-analyze. The goal of this study is to identify, illustrate, and compare a range of possible analysis options for researchers to whom raw data are available, wanting to fit a structural equation model (SEM) to these data. This study illustrates techniques that…
Descriptors: Meta Analysis, Structural Equation Models, Research Methodology, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Seth Elkin-Frankston; James McIntyre; Tad T. Brunyé; Aaron L. Gardony; Clifford L. Hancock; Meghan P. O'Donovan; Victoria G. Bode; Eric L. Miller – Cognitive Research: Principles and Implications, 2025
Existing toolkits for analyzing movement dynamics in animal ecology primarily focus on individual or group behavior in habitats without predefined boundaries, while methods for studying human activity often cater to bounded environments, such as team sports played on defined fields. This leaves a gap in tools for modeling and analyzing human group…
Descriptors: Group Dynamics, Military Personnel, Measures (Individuals), Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Mark W. Isken – INFORMS Transactions on Education, 2025
A staple of many spreadsheet-based management science courses is the use of Excel for activities such as model building, sensitivity analysis, goal seeking, and Monte-Carlo simulation. What might those things look like if carried out using Python? We describe a teaching module in which Python is used to do typical Excel-based modeling and…
Descriptors: Spreadsheets, Models, Programming Languages, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Cassandra Artman Collier; Anne L. Powell – Journal of Information Systems Education, 2024
As organizations' reliance on data increases, the prevalence of data analytics programs in universities likewise increases. However, despite this specialized education, scholars still report a gap between the knowledge and skills students graduate with and those required by industry upon beginning work as an entry-level data analyst. We draw on…
Descriptors: Data Analysis, Information Systems, Educational Research, Data Collection
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ludovica Mastrobattista; María Muñoz-Rico; José Antonio Cordón-García – Journal of Technology and Science Education, 2024
The main objective of this article is to highlight the importance of training in digital tools at the university level to foster the development of innovative and efficient data analysis from a scientific perspective. In an increasingly digitised world, the acquisition of digital skills has become a fundamental requirement for success in various…
Descriptors: Digital Literacy, Data Analysis, Computer Software, Computer Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Kean Birch; Janja Komljenovic; Sam Sellar; Morten Hansen – Learning, Media and Technology, 2025
The COVID pandemic highlighted the increasing deployment of digital technologies in educational institutions, defined as 'edtech'. The most visible edtech was video conferencing software, but a swathe of edtech startups have sought to roll out their products and services to educational institutions. We focus specifically on the deployment of…
Descriptors: Educational Technology, Technology Uses in Education, Higher Education, Videoconferencing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kane Meissel; Esther S. Yao – Practical Assessment, Research & Evaluation, 2024
Effect sizes are important because they are an accessible way to indicate the practical importance of observed associations or differences. Standardized mean difference (SMD) effect sizes, such as Cohen's d, are widely used in education and the social sciences -- in part because they are relatively easy to calculate. However, SMD effect sizes…
Descriptors: Computer Software, Programming Languages, Effect Size, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Robert C. Lorenz; Mirjam Jenny; Anja Jacobs; Katja Matthias – Research Synthesis Methods, 2024
Conducting high-quality overviews of reviews (OoR) is time-consuming. Because the quality of systematic reviews (SRs) varies, it is necessary to critically appraise SRs when conducting an OoR. A well-established appraisal tool is A Measurement Tool to Assess Systematic Reviews (AMSTAR) 2, which takes about 15-32 min per application. To save time,…
Descriptors: Decision Making, Time Management, Evaluation Methods, Quality Assurance
Peer reviewed Peer reviewed
Direct linkDirect link
Qusai Khraisha; Sophie Put; Johanna Kappenberg; Azza Warraitch; Kristin Hadfield – Research Synthesis Methods, 2024
Systematic reviews are vital for guiding practice, research and policy, although they are often slow and labour-intensive. Large language models (LLMs) could speed up and automate systematic reviews, but their performance in such tasks has yet to be comprehensively evaluated against humans, and no study has tested Generative Pre-Trained…
Descriptors: Peer Evaluation, Research Reports, Artificial Intelligence, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Hadis Anahideh; Nazanin Nezami; Abolfazl Asudeh – Grantee Submission, 2025
It is of critical importance to be aware of the historical discrimination embedded in the data and to consider a fairness measure to reduce bias throughout the predictive modeling pipeline. Given various notions of fairness defined in the literature, investigating the correlation and interaction among metrics is vital for addressing unfairness.…
Descriptors: Correlation, Measurement Techniques, Guidelines, Semantics
Peer reviewed Peer reviewed
Direct linkDirect link
Adam Diamant – INFORMS Transactions on Education, 2024
Managers are increasingly being tasked with overseeing data-driven projects that incorporate prescriptive and predictive models. Furthermore, basic knowledge of the data analytics pipeline is a fundamental requirement in many modern organizations. Given the central importance of analytics in today's business environment, there is a growing demand…
Descriptors: Business Administration Education, Graduate Students, Prediction, Mathematical Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Tamar Fuhrmann; Leah Rosenbaum; Aditi Wagh; Adelmo Eloy; Jacob Wolf; Paulo Blikstein; Michelle Wilkerson – Science Education, 2025
When learning about scientific phenomena, students are expected to "mechanistically" explain how underlying interactions produce the observable phenomenon and "conceptually" connect the observed phenomenon to canonical scientific knowledge. This paper investigates how the integration of the complementary processes of designing…
Descriptors: Mechanics (Physics), Thinking Skills, Scientific Concepts, Concept Formation
Previous Page | Next Page »
Pages: 1  |  2  |  3