NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xiaomeng Huang; Xavier Ochoa – Journal of Learning Analytics, 2025
Collaboration skills are fundamental to effective collaborative learning, career success, and responsible citizenship. Collaborative learning analytics (CLA) systems hold significant potential in helping students develop these skills by automatically collecting group interaction data, analyzing skill levels, and providing actionable feedback so…
Descriptors: Learning Analytics, Cooperative Learning, Cooperation, Skill Development
Peer reviewed Peer reviewed
Direct linkDirect link
Feng Hsu Wang – IEEE Transactions on Learning Technologies, 2024
Due to the development of deep learning technology, its application in education has received increasing attention from researchers. Intelligent agents based on deep learning technology can perform higher order intellectual tasks than ever. However, the high deployment cost of deep learning models has hindered their widespread application in…
Descriptors: Learning Processes, Models, Man Machine Systems, Cooperative Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pankaj Chejara; Luis P. Prieto; Yannis Dimitriadis; Maria Jesus Rodriguez-Triana; Adolfo Ruiz-Calleja; Reet Kasepalu; Shashi Kant Shankar – Journal of Learning Analytics, 2024
Multimodal learning analytics (MMLA) research has shown the feasibility of building automated models of collaboration quality using artificial intelligence (AI) techniques (e.g., supervised machine learning (ML)), thus enabling the development of monitoring and guiding tools for computer-supported collaborative learning (CSCL). However, the…
Descriptors: Learning Analytics, Attribution Theory, Acoustics, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Joshua Weidlich; Aron Fink; Ioana Jivet; Jane Yau; Tornike Giorgashvili; Hendrik Drachsler; Andreas Frey – Journal of Computer Assisted Learning, 2024
Background: Developments in educational technology and learning analytics make it possible to automatically formulate and deploy personalized formative feedback to learners at scale. However, to be effective, the motivational and emotional impacts of such automated and personalized feedback need to be considered. The literature on feedback…
Descriptors: Emotional Response, Student Motivation, Feedback (Response), Automation