NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
James Ohisei Uanhoro – Structural Equation Modeling: A Multidisciplinary Journal, 2024
We present a method for Bayesian structural equation modeling of sample correlation matrices as correlation structures. The method transforms the sample correlation matrix to an unbounded vector using the matrix logarithm function. Bayesian inference about the unbounded vector is performed assuming a multivariate-normal likelihood, with a mean…
Descriptors: Bayesian Statistics, Structural Equation Models, Correlation, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
James Ohisei Uanhoro – Educational and Psychological Measurement, 2024
Accounting for model misspecification in Bayesian structural equation models is an active area of research. We present a uniquely Bayesian approach to misspecification that models the degree of misspecification as a parameter--a parameter akin to the correlation root mean squared residual. The misspecification parameter can be interpreted on its…
Descriptors: Bayesian Statistics, Structural Equation Models, Simulation, Statistical Inference
Samer A. Nour Eddine – ProQuest LLC, 2024
In this thesis, I use a combination of simulations and empirical data to demonstrate that a small set of structural and functional principles - the basic tenets of predictive coding theory - succinctly accounts for a very wide range of properties in the language processing system. Predictive coding approximates hierarchical Bayesian inference via…
Descriptors: Semantics, Simulation, Psycholinguistics, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Sedat Sen; Allan S. Cohen – Educational and Psychological Measurement, 2024
A Monte Carlo simulation study was conducted to compare fit indices used for detecting the correct latent class in three dichotomous mixture item response theory (IRT) models. Ten indices were considered: Akaike's information criterion (AIC), the corrected AIC (AICc), Bayesian information criterion (BIC), consistent AIC (CAIC), Draper's…
Descriptors: Goodness of Fit, Item Response Theory, Sample Size, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Fangxing Bai; Ben Kelcey – Society for Research on Educational Effectiveness, 2024
Purpose and Background: Despite the flexibility of multilevel structural equation modeling (MLSEM), a practical limitation many researchers encounter is how to effectively estimate model parameters with typical sample sizes when there are many levels of (potentially disparate) nesting. We develop a method-of-moment corrected maximum likelihood…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Sample Size, Faculty Development
Peer reviewed Peer reviewed
Direct linkDirect link
Georgios P. Georgiou; Aretousa Giannakou – Journal of Psycholinguistic Research, 2024
Although extensive research has focused on the perceptual abilities of second language (L2) learners, a significant gap persists in understanding how cognitive functions like phonological short-term memory (PSTM) and nonverbal intelligence (IQ) impact L2 speech perception. This study sets out to investigate the discrimination of L2 English…
Descriptors: Nonverbal Ability, Second Language Learning, Short Term Memory, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Frederick J. Poole; Matthew D. Coss; Jody Clarke-Midura – Language Learning & Technology, 2025
This study explored the use of stealth assessments within a digital game to assess second language (L2) Chinese learners' reading comprehension. Log data tracking learners' in-game behaviors from a game designed for Chinese dual language immersion classrooms (Poole et al., 2022) were used to construct Bayesian Belief Networks to model reading…
Descriptors: Second Language Instruction, Second Language Learning, Reading Comprehension, Game Based Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Pavel Chernyavskiy; Traci S. Kutaka; Carson Keeter; Julie Sarama; Douglas Clements – Grantee Submission, 2024
When researchers code behavior that is undetectable or falls outside of the validated ordinal scale, the resultant outcomes often suffer from informative missingness. Incorrect analysis of such data can lead to biased arguments around efficacy and effectiveness in the context of experimental and intervention research. Here, we detail a new…
Descriptors: Bayesian Statistics, Mathematics Instruction, Learning Trajectories, Item Response Theory