Publication Date
In 2025 | 13 |
Since 2024 | 44 |
Descriptor
Source
Author
Dragan Gaševic | 3 |
Guanliang Chen | 2 |
Mladen Rakovic | 2 |
Abdullah Oguz | 1 |
Alessandra Zappoli | 1 |
Alessio Palmero Aprosio | 1 |
Andreas Frey | 1 |
Andres Neyem | 1 |
Aron Fink | 1 |
Baiyun Chen | 1 |
Baofeng Ren | 1 |
More ▼ |
Publication Type
Education Level
Audience
Location
Taiwan | 3 |
China | 2 |
Asia | 1 |
Australia | 1 |
California | 1 |
California (Stanford) | 1 |
Germany | 1 |
Israel | 1 |
Italy | 1 |
Pennsylvania (Pittsburgh) | 1 |
Spain | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Linden Wang – Education and Information Technologies, 2024
We studied the capability of automated machine translation in the online video education space by automatically translating Khan Academy videos with state-of-the-art translation models and applying text-to-speech synthesis and audio/video synchronization to build engaging videos in target languages. We also analyzed and established two reliable…
Descriptors: Artificial Intelligence, Translation, Natural Language Processing, Educational Technology
Zhao Wanli; Tang Youjun; Ma Xiaomei – SAGE Open, 2025
Deeper learning (DL) is firmly rooted in learning science and computer science. However, a dearth of review studies has probed its trajectory in DL in foreign languages (DLFL). Utilizing SSCI from the Web of Science Core Collection, we employ Citespace and Vosviewer to analyze the scientific knowledge graph of DLFL literature. Our analysis…
Descriptors: Bibliometrics, Second Language Learning, Computer Science, Educational Research
Large Language Models and Intelligent Tutoring Systems: Conflicting Paradigms and Possible Solutions

Punya Mishra; Danielle S. McNamara; Gregory Goodwin; Diego Zapata-Rivera – Grantee Submission, 2025
The advent of Large Language Models (LLMs) has fundamentally disrupted our thinking about educational technology. Their ability to engage in natural dialogue, provide contextually relevant responses, and adapt to learner needs has led many to envision them as powerful tools for personalized learning. This emergence raises important questions about…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Technology Uses in Education, Educational Technology
Behzad Mirzababaei; Viktoria Pammer-Schindler – IEEE Transactions on Learning Technologies, 2024
In this article, we investigate a systematic workflow that supports the learning engineering process of formulating the starting question for a conversational module based on existing learning materials, specifying the input that transformer-based language models need to function as classifiers, and specifying the adaptive dialogue structure,…
Descriptors: Learning Processes, Electronic Learning, Artificial Intelligence, Natural Language Processing
Silvia García-Méndez; Francisco de Arriba-Pérez; María del Carmen Somoza-López – Science & Education, 2025
Transformer architectures contribute to managing long-term dependencies for natural language processing, representing one of the most recent changes in the field. These architectures are the basis of the innovative, cutting-edge large language models (LLMs) that have produced a huge buzz in several fields and industrial sectors, among the ones…
Descriptors: Natural Language Processing, Artificial Intelligence, Literature Reviews, Technology Uses in Education
Kanwal Zahoor; Narmeen Zakaria Bawany – Interactive Learning Environments, 2024
Mobile application developers rely largely on user reviews for identifying issues in mobile applications and meeting the users' expectations. User reviews are unstructured, unorganized and very informal. Identifying and classifying issues by extracting required information from reviews is difficult due to a large number of reviews. To automate the…
Descriptors: Artificial Intelligence, Computer Oriented Programs, Courseware, Learning Processes
Taskeen Hasrod; Yannick B. Nuapia; Hlanganani Tutu – Journal of Chemical Education, 2024
In order to improve the accessibility and user friendliness of an accurately pretrained stacking ensemble machine learning regressor used to predict sulfate levels (mg/L) in Acid Mine Drainage (AMD), a Graphical User Interface (GUI) was developed using Python by combining human input with ChatGPT and deployed in the Jupyter Notebook environment.…
Descriptors: Artificial Intelligence, Natural Language Processing, Educational Technology, Computer Software
Tianyuan Yang; Baofeng Ren; Chenghao Gu; Boxuan Ma; Shin 'ichi Konomi – International Association for Development of the Information Society, 2024
As education increasingly shifts towards a technology-driven model, artificial intelligence systems like ChatGPT are gaining recognition for their potential to enhance educational support. In university education and MOOC environments, students often select courses that align with their specific needs. During this process, access to information…
Descriptors: Concept Formation, Artificial Intelligence, Computer Uses in Education, MOOCs
Kevin Peyton; Saritha Unnikrishnan; Brian Mulligan – Discover Education, 2025
Within the university sector, student recruitment and enrolment are key strategies as institutions strive to attract, retain and engage students. This strategy is underpinned by the provision of services, applications and technologies that facilitate lecturing and support staff. Universities that offer online learning have a particular incentive…
Descriptors: Universities, Artificial Intelligence, Computer Mediated Communication, College Students
Mengqian Wang; Wenge Guo – ECNU Review of Education, 2025
This review compares generative artificial intelligence with five representative educational technologies in history and concludes that AI technology can become a knowledge producer and thus can be utilized as educative AI to enhance teaching and learning outcomes. From a historical perspective, each technological breakthrough has affected…
Descriptors: Artificial Intelligence, Man Machine Systems, Natural Language Processing, History
Lixiang Yan; Lele Sha; Linxuan Zhao; Yuheng Li; Roberto Martinez-Maldonado; Guanliang Chen; Xinyu Li; Yueqiao Jin; Dragan Gaševic – British Journal of Educational Technology, 2024
Educational technology innovations leveraging large language models (LLMs) have shown the potential to automate the laborious process of generating and analysing textual content. While various innovations have been developed to automate a range of educational tasks (eg, question generation, feedback provision, and essay grading), there are…
Descriptors: Educational Technology, Artificial Intelligence, Natural Language Processing, Educational Innovation
Jessie S. Barrot – Technology, Knowledge and Learning, 2024
This emerging technology report delves into the role of ChatGPT, an OpenAI conversational AI, in language learning. The initial section introduces ChatGPT's nature and highlights its features, including accessibility, personalization, immersive learning, and instant feedback, which render it a valuable asset for language learners and educators…
Descriptors: Artificial Intelligence, Man Machine Systems, Natural Language Processing, Language Acquisition
Jin Mao; Baiyun Chen; Juhong Christie Liu – TechTrends: Linking Research and Practice to Improve Learning, 2024
The abrupt emergence and rapid advancement of generative artificial intelligence (AI) technologies, transitioning from research labs to potentially all aspects of social life, has brought a profound impact on education, science, arts, journalism, and every facet of human life and communication. The purpose of this paper is to recapitulate the use…
Descriptors: Artificial Intelligence, Technology Uses in Education, Educational Technology, Electronic Learning
Lae Lae Shwe; Sureena Matayong; Suntorn Witosurapot – Education and Information Technologies, 2024
Multiple Choice Questions (MCQs) are an important evaluation technique for both examinations and learning activities. However, the manual creation of questions is time-consuming and challenging for teachers. Hence, there is a notable demand for an Automatic Question Generation (AQG) system. Several systems have been created for this aim, but the…
Descriptors: Difficulty Level, Computer Assisted Testing, Adaptive Testing, Multiple Choice Tests
Danielle A. Waterfield; Latesha Watson; Jamie Day – Journal of Special Education Technology, 2024
Artificial intelligence (AI) has been rapidly developing, both in the education field and beyond, in recent years. Due to this fast-paced nature, special education teachers may not be aware of the availability of AI that could be pertinent to their practice. In this manuscript, five AI platforms that are readily available for special education…
Descriptors: Artificial Intelligence, Special Education, Educational Technology, Teaching Methods