NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20256
Since 202435
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 35 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Long Zhang; Khe Foon Hew – Education and Information Technologies, 2025
Although self-regulated learning (SRL) plays an important role in supporting online learning performance, the lack of student self-regulation skills poses a persistent problem to many educators. Recommender systems have the potential to promote SRL by delivering personalized feedback and tailoring learning strategies to meet individual learners'…
Descriptors: Independent Study, Electronic Learning, Online Courses, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Jing Chen; Ruiqi Wang; Bei Fang; Chen Zuo – Interactive Learning Environments, 2024
Online learning has developed rapidly and billions of learners have participated in various courses. However, the high dropout rate is universal and learning performance is not satisfactory. Fortunately, learners have posted a large number of reviews which express their feedback opinions. The fine-grained aspects and opinions existing in reviews…
Descriptors: Online Courses, Feedback (Response), Opinions, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Adil Boughida; Mohamed Nadjib Kouahla; Yacine Lafifi – Education and Information Technologies, 2024
In e-learning environments, most adaptive systems do not consider the learner's emotional state when recommending activities for learning difficulties, blockages, or demotivation. In this paper, we propose a new approach of emotion-based adaptation in e-learning environments. The system will allow recommendation resources/activities to motivate…
Descriptors: Psychological Patterns, Electronic Learning, Educational Environment, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Shuanghong Shen; Qi Liu; Zhenya Huang; Yonghe Zheng; Minghao Yin; Minjuan Wang; Enhong Chen – IEEE Transactions on Learning Technologies, 2024
Modern online education has the capacity to provide intelligent educational services by automatically analyzing substantial amounts of student behavioral data. Knowledge tracing (KT) is one of the fundamental tasks for student behavioral data analysis, aiming to monitor students' evolving knowledge state during their problem-solving process. In…
Descriptors: Student Behavior, Electronic Learning, Data Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Gamze Türkmen – Journal of Educational Computing Research, 2025
Explainable Artificial Intelligence (XAI) refers to systems that make AI models more transparent, helping users understand how outputs are generated. XAI algorithms are considered valuable in educational research, supporting outcomes like student success, trust, and motivation. Their potential to enhance transparency and reliability in online…
Descriptors: Artificial Intelligence, Natural Language Processing, Trust (Psychology), Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Sadhu Prasad Kar; Amit Kumar Das; Rajeev Chatterjee; Jyotsna Kumar Mandal – Education and Information Technologies, 2024
Technology Enabled Learning (TEL) has a major impact on the learning adaptability of the learners. During the COVID-19 pandemic, there has been a drastic change in the learning methodology. The adaptability of learners from the various domains, levels and age has been a significant component of research in context to education. In this paper, the…
Descriptors: Online Courses, Artificial Intelligence, Technology Uses in Education, Student Adjustment
Peer reviewed Peer reviewed
Direct linkDirect link
Xueyu Sun; Ting Wang – International Journal of Information and Communication Technology Education, 2024
This study innovates English network teaching by applying a refined Association Rule Mining (ARM) algorithm. It integrates an "interest" parameter into ARM, dynamically adapting content to individual learners' profiles, improving engagement and outcomes. Controlled experiments, spanning diverse online platforms, validate the ARM model's…
Descriptors: Models, Design, Algorithms, Individualized Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Ke Ting Chong; Noraini Ibrahim; Sharin Hazlin Huspi; Wan Mohd Nasir Wan Kadir; Mohd Adham Isa – Journal of Information Technology Education: Research, 2025
Aim/Purpose: The purpose of this study is to review and categorize current trends in student engagement and performance prediction using machine learning techniques during online learning in higher education. The goal is to gain a better understanding of student engagement prediction research that is important for current educational planning and…
Descriptors: Literature Reviews, Meta Analysis, Artificial Intelligence, Higher Education
Peer reviewed Peer reviewed
Direct linkDirect link
Bambang Sulistio; Arief Ramadhan; Edi Abdurachman; Muhammad Zarlis; Agung Trisetyarso – Education and Information Technologies, 2024
Computer science development, especially machine learning, is a thriving innovation essential for education. It makes the process of teaching and learning more accessible and manageable and also promotes equality. The positive influence of machine learning can also be felt in Islamic studies, particularly in Hadith studies. This literature review…
Descriptors: Electronic Learning, Artificial Intelligence, Computer Uses in Education, Islam
Peer reviewed Peer reviewed
Direct linkDirect link
Arturo Cortez; José Ramón Lizárraga; Edward Rivero – Reading Research Quarterly, 2024
This article reports on findings from a social design-based study conducted with an intergenerational group of youth, educators and researchers participating in the Learning to Transform (LiTT) Gaming Lab. We advance the notion of AlgoRitmo Literacies, to highlight the ingenuity of youth and educators as they used a tool called Character AI to…
Descriptors: Algorithms, Artificial Intelligence, Latin American Culture, Literacy
Peer reviewed Peer reviewed
Direct linkDirect link
O. S. Adewale; O. C. Agbonifo; E. O. Ibam; A. I. Makinde; O. K. Boyinbode; B. A. Ojokoh; O. Olabode; M. S. Omirin; S. O. Olatunji – Interactive Learning Environments, 2024
With the advent of technological advancement in learning, such as context-awareness, ubiquity and personalisation, various innovations in teaching and learning have led to improved learning. This research paper aims to develop a system that supports personalised learning through adaptive content, adaptive learning path and context awareness to…
Descriptors: Cognitive Style, Individualized Instruction, Learning Processes, Preferences
Peer reviewed Peer reviewed
Direct linkDirect link
Chenglu Li; Wanli Xing; Walter Leite – Interactive Learning Environments, 2024
As instruction shifts away from traditional approaches, online learning has grown in popularity in K-12 and higher education. Artificial intelligence (AI) and learning analytics methods such as machine learning have been used by educational scholars to support online learners on a large scale. However, the fairness of AI prediction in educational…
Descriptors: Artificial Intelligence, Prediction, Mathematics Achievement, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Lishan Zhang; Linyu Deng; Sixv Zhang; Ling Chen – IEEE Transactions on Learning Technologies, 2024
With the popularity of online one-to-one tutoring, there are emerging concerns about the quality and effectiveness of this kind of tutoring. Although there are some evaluation methods available, they are heavily relied on manual coding by experts, which is too costly. Therefore, using machine learning to predict instruction quality automatically…
Descriptors: Automation, Classification, Artificial Intelligence, Tutoring
Peer reviewed Peer reviewed
Direct linkDirect link
Jyoti Wadmare; Dakshita Kolte; Kapil Bhatia; Palak Desai; Ganesh Wadmare – Journal of Information Technology Education: Innovations in Practice, 2024
Aim/Purpose: This paper highlights an innovative and impactful online operating system algorithms e-learning tool in engineering education. Background: Common teaching methodologies make it difficult to teach complex algorithms of operating systems. This paper presents a solution to this problem by providing simulations of different complex…
Descriptors: Engineering, Science Education, Material Development, Computer Simulation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Abdessamad Chanaa; Nour-eddine El Faddouli – Journal of Education and Learning (EduLearn), 2024
Adaptive online learning can be realized through the evaluation of the learning process. Monitoring and supervising learners' cognitive levels and adjusting learning strategies can increasingly improve the quality of online learning. This analysis is made possible by real-time measurement of learners' cognitive levels during the online learning…
Descriptors: Electronic Learning, Evaluation Methods, Artificial Intelligence, Taxonomy
Previous Page | Next Page »
Pages: 1  |  2  |  3