NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 202514
Since 202459
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 59 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Tihomir Asparouhov; Bengt Muthén – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Penalized structural equation models (PSEM) is a new powerful estimation technique that can be used to tackle a variety of difficult structural estimation problems that can not be handled with previously developed methods. In this paper we describe the PSEM framework and illustrate the quality of the method with simulation studies.…
Descriptors: Structural Equation Models, Computation, Factor Analysis, Measurement Techniques
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kelvin T. Afolabi; Timothy R. Konold – Practical Assessment, Research & Evaluation, 2024
Exploratory structural equation (ESEM) has received increased attention in the methodological literature as a promising tool for evaluating latent variable measurement models. It overcomes many of the limitations attached to exploratory factor analysis (EFA) and confirmatory factor analysis (CFA), while capitalizing on the benefits of each. Given…
Descriptors: Measurement Techniques, Factor Analysis, Structural Equation Models, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Lihan Chen; Milica Miocevic; Carl F. Falk – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data pooling is a powerful strategy in empirical research. However, combining multiple datasets often results in a large amount of missing data, as variables that are not present in some datasets effectively contain missing values for all participants in those datasets. Furthermore, data pooling typically leads to a mix of continuous and…
Descriptors: Simulation, Factor Analysis, Models, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Ke-Hai Yuan; Zhiyong Zhang – Grantee Submission, 2025
Most methods for structural equation modeling (SEM) focused on the analysis of covariance matrices. However, "Historically, interesting psychological theories have been phrased in terms of correlation coefficients." This might be because data in social and behavioral sciences typically do not have predefined metrics. While proper methods…
Descriptors: Correlation, Statistical Analysis, Models, Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Chunhua Cao; Yan Wang; Eunsook Kim – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Multilevel factor mixture modeling (FMM) is a hybrid of multilevel confirmatory factor analysis (CFA) and multilevel latent class analysis (LCA). It allows researchers to examine population heterogeneity at the within level, between level, or both levels. This tutorial focuses on explicating the model specification of multilevel FMM that considers…
Descriptors: Hierarchical Linear Modeling, Factor Analysis, Nonparametric Statistics, Statistical Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tugay Kaçak; Abdullah Faruk Kiliç – International Journal of Assessment Tools in Education, 2025
Researchers continue to choose PCA in scale development and adaptation studies because it is the default setting and overestimates measurement quality. When PCA is utilized in investigations, the explained variance and factor loadings can be exaggerated. PCA, in contrast to the models given in the literature, should be investigated in…
Descriptors: Factor Analysis, Monte Carlo Methods, Mathematical Models, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Bilge Bal-Sezerel; Deniz Arslan; Ugur Sak – Measurement: Interdisciplinary Research and Perspectives, 2025
In this study, the factorial invariance of the ASIS (Anadolu-Sak Intelligence Scale) was examined across time. Data were obtained from there groups of first-grade students who were administered the ASIS in 2020, 2021, and 2022. The analyses were conducted using multisample confirmatory factor analyses. Factorial invariance was tested with six…
Descriptors: Intelligence Tests, Grade 1, Factor Structure, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Timothy R. Konold; Elizabeth A. Sanders – Measurement: Interdisciplinary Research and Perspectives, 2024
Compared to traditional confirmatory factor analysis (CFA), exploratory structural equation modeling (ESEM) has been shown to result in less structural parameter bias when cross-loadings (CLs) are present. However, when model fit is reasonable for CFA (over ESEM), CFA should be preferred on the basis of parsimony. Using simulations, the current…
Descriptors: Structural Equation Models, Factor Analysis, Factor Structure, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Sooyong Lee; Suhwa Han; Seung W. Choi – Journal of Educational Measurement, 2024
Research has shown that multiple-indicator multiple-cause (MIMIC) models can result in inflated Type I error rates in detecting differential item functioning (DIF) when the assumption of equal latent variance is violated. This study explains how the violation of the equal variance assumption adversely impacts the detection of nonuniform DIF and…
Descriptors: Factor Analysis, Bayesian Statistics, Test Bias, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Jinying Ouyang; Zhehan Jiang; Christine DiStefano; Junhao Pan; Yuting Han; Lingling Xu; Dexin Shi; Fen Cai – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Precisely estimating factor scores is challenging, especially when models are mis-specified. Stemming from network analysis, centrality measures offer an alternative approach to estimating the scores. Using a two-fold simulation design with varying availability of a priori theoretical knowledge, this study implemented hybrid centrality to estimate…
Descriptors: Structural Equation Models, Computation, Network Analysis, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
A. R. Georgeson – Structural Equation Modeling: A Multidisciplinary Journal, 2025
There is increasing interest in using factor scores in structural equation models and there have been numerous methodological papers on the topic. Nevertheless, sum scores, which are computed from adding up item responses, continue to be ubiquitous in practice. It is therefore important to compare simulation results involving factor scores to…
Descriptors: Structural Equation Models, Scores, Factor Analysis, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Tenko Raykov; Lisa Calvocoressi; Randall E. Schumacker – Measurement: Interdisciplinary Research and Perspectives, 2024
This paper is concerned with the process of selecting between the increasingly popular bi-factor model and the second-order factor model in measurement research. It is indicated that in certain settings widely used in empirical studies, the second-order model is nested in the bi-factor model and obtained from the latter after imposing appropriate…
Descriptors: Factor Analysis, Decision Making, Computer Software, Measurement Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Naoto Yamashita – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Matrix decomposition structural equation modeling (MDSEM) is introduced as a novel approach in structural equation modeling, contrasting with traditional structural equation modeling (SEM). MDSEM approximates the data matrix using a model generated by the hypothetical model and addresses limitations faced by conventional SEM procedures by…
Descriptors: Structural Equation Models, Factor Structure, Robustness (Statistics), Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Alexander von Eye; Wolfgang Wiedermann – Merrill-Palmer Quarterly: A Peer Relations Journal, 2024
In this article, we pursue two points of discussion. First, a new illustration is presented of the person-oriented tenet according to which it can be hazardous to generalize to the individual results that are based on the analysis of aggregated data. Second, it is illustrated that taking into account serial dependence information can result in not…
Descriptors: Research Methodology, Generalizability Theory, Generalization, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Njål Foldnes; Jonas Moss; Steffen Grønneberg – Structural Equation Modeling: A Multidisciplinary Journal, 2025
We propose new ways of robustifying goodness-of-fit tests for structural equation modeling under non-normality. These test statistics have limit distributions characterized by eigenvalues whose estimates are highly unstable and biased in known directions. To take this into account, we design model-based trend predictions to approximate the…
Descriptors: Goodness of Fit, Structural Equation Models, Robustness (Statistics), Prediction
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4