NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 13 results Save | Export
Uk Hyun Cho – ProQuest LLC, 2024
The present study investigates the influence of multidimensionality on linking and equating in a unidimensional IRT. Two hypothetical multidimensional scenarios are explored under a nonequivalent group common-item equating design. The first scenario examines test forms designed to measure multiple constructs, while the second scenario examines a…
Descriptors: Item Response Theory, Classification, Correlation, Test Format
Peer reviewed Peer reviewed
Direct linkDirect link
Dubravka Svetina Valdivia; Shenghai Dai – Journal of Experimental Education, 2024
Applications of polytomous IRT models in applied fields (e.g., health, education, psychology) are abound. However, little is known about the impact of the number of categories and sample size requirements for precise parameter recovery. In a simulation study, we investigated the impact of the number of response categories and required sample size…
Descriptors: Item Response Theory, Sample Size, Models, Classification
Huan Liu – ProQuest LLC, 2024
In many large-scale testing programs, examinees are frequently categorized into different performance levels. These classifications are then used to make high-stakes decisions about examinees in contexts such as in licensure, certification, and educational assessments. Numerous approaches to estimating the consistency and accuracy of this…
Descriptors: Classification, Accuracy, Item Response Theory, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Lientje Maas; Matthew J. Madison; Matthieu J. S. Brinkhuis – Grantee Submission, 2024
Diagnostic classification models (DCMs) are psychometric models that yield probabilistic classifications of respondents according to a set of discrete latent variables. The current study examines the recently introduced one-parameter log-linear cognitive diagnosis model (1-PLCDM), which has increased interpretability compared with general DCMs due…
Descriptors: Clinical Diagnosis, Classification, Models, Psychometrics
Peer reviewed Peer reviewed
Direct linkDirect link
Madeline A. Schellman; Matthew J. Madison – Grantee Submission, 2024
Diagnostic classification models (DCMs) have grown in popularity as stakeholders increasingly desire actionable information related to students' skill competencies. Longitudinal DCMs offer a psychometric framework for providing estimates of students' proficiency status transitions over time. For both cross-sectional and longitudinal DCMs, it is…
Descriptors: Diagnostic Tests, Classification, Models, Psychometrics
Peer reviewed Peer reviewed
Direct linkDirect link
Daniel Murphy; Sarah Quesen; Matthew Brunetti; Quintin Love – Educational Measurement: Issues and Practice, 2024
Categorical growth models describe examinee growth in terms of performance-level category transitions, which implies that some percentage of examinees will be misclassified. This paper introduces a new procedure for estimating the classification accuracy of categorical growth models, based on Rudner's classification accuracy index for item…
Descriptors: Classification, Growth Models, Accuracy, Performance Based Assessment
Peer reviewed Peer reviewed
Direct linkDirect link
Erik Forsberg; Anders Sjöberg – Measurement: Interdisciplinary Research and Perspectives, 2025
This paper reports a validation study based on descriptive multidimensional item response theory (DMIRT), implemented in the R package "D3mirt" by using the ERS-C, an extended version of the Relevance subscale from the Moral Foundations Questionnaire including two new items for collectivism (17 items in total). Two latent models are…
Descriptors: Evaluation Methods, Programming Languages, Altruism, Collectivism
Peer reviewed Peer reviewed
Direct linkDirect link
Sijia Huang; Li Cai – Journal of Educational and Behavioral Statistics, 2024
The cross-classified data structure is ubiquitous in education, psychology, and health outcome sciences. In these areas, assessment instruments that are made up of multiple items are frequently used to measure latent constructs. The presence of both the cross-classified structure and multivariate categorical outcomes leads to the so-called…
Descriptors: Classification, Data Collection, Data Analysis, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Yang Du; Susu Zhang – Journal of Educational and Behavioral Statistics, 2025
Item compromise has long posed challenges in educational measurement, jeopardizing both test validity and test security of continuous tests. Detecting compromised items is therefore crucial to address this concern. The present literature on compromised item detection reveals two notable gaps: First, the majority of existing methods are based upon…
Descriptors: Item Response Theory, Item Analysis, Bayesian Statistics, Educational Assessment
Peer reviewed Peer reviewed
Direct linkDirect link
Matthew J. Madison; Stefanie Wind; Lientje Maas; Kazuhiro Yamaguchi; Sergio Haab – Grantee Submission, 2024
Diagnostic classification models (DCMs) are psychometric models designed to classify examinees according to their proficiency or nonproficiency of specified latent characteristics. These models are well suited for providing diagnostic and actionable feedback to support intermediate and formative assessment efforts. Several DCMs have been developed…
Descriptors: Diagnostic Tests, Classification, Models, Psychometrics
Peer reviewed Peer reviewed
Direct linkDirect link
Matthew J. Madison; Stefanie A. Wind; Lientje Maas; Kazuhiro Yamaguchi; Sergio Haab – Journal of Educational Measurement, 2024
Diagnostic classification models (DCMs) are psychometric models designed to classify examinees according to their proficiency or nonproficiency of specified latent characteristics. These models are well suited for providing diagnostic and actionable feedback to support intermediate and formative assessment efforts. Several DCMs have been developed…
Descriptors: Diagnostic Tests, Classification, Models, Psychometrics
Peer reviewed Peer reviewed
Direct linkDirect link
Yuanfang Liu; Mark H. C. Lai; Ben Kelcey – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Measurement invariance holds when a latent construct is measured in the same way across different levels of background variables (continuous or categorical) while controlling for the true value of that construct. Using Monte Carlo simulation, this paper compares the multiple indicators, multiple causes (MIMIC) model and MIMIC-interaction to a…
Descriptors: Classification, Accuracy, Error of Measurement, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Sedat Sen; Allan S. Cohen – Educational and Psychological Measurement, 2024
A Monte Carlo simulation study was conducted to compare fit indices used for detecting the correct latent class in three dichotomous mixture item response theory (IRT) models. Ten indices were considered: Akaike's information criterion (AIC), the corrected AIC (AICc), Bayesian information criterion (BIC), consistent AIC (CAIC), Draper's…
Descriptors: Goodness of Fit, Item Response Theory, Sample Size, Classification