NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Joshua B. Gilbert; Luke W. Miratrix; Mridul Joshi; Benjamin W. Domingue – Journal of Educational and Behavioral Statistics, 2025
Analyzing heterogeneous treatment effects (HTEs) plays a crucial role in understanding the impacts of educational interventions. A standard practice for HTE analysis is to examine interactions between treatment status and preintervention participant characteristics, such as pretest scores, to identify how different groups respond to treatment.…
Descriptors: Causal Models, Item Response Theory, Statistical Inference, Psychometrics
Peer reviewed Peer reviewed
Direct linkDirect link
Sainan Xu; Jing Lu; Jiwei Zhang; Chun Wang; Gongjun Xu – Grantee Submission, 2024
With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational…
Descriptors: Educational Assessment, Bayesian Statistics, Statistical Inference, Item Response Theory
Joshua B. Gilbert; Luke W. Miratrix; Mridul Joshi; Benjamin W. Domingue – Annenberg Institute for School Reform at Brown University, 2024
Analyzing heterogeneous treatment effects (HTE) plays a crucial role in understanding the impacts of educational interventions. A standard practice for HTE analysis is to examine interactions between treatment status and pre-intervention participant characteristics, such as pretest scores, to identify how different groups respond to treatment.…
Descriptors: Causal Models, Item Response Theory, Statistical Inference, Psychometrics