Publication Date
In 2025 | 1 |
Since 2024 | 7 |
Descriptor
Author
Ben Kelcey | 2 |
Fangxing Bai | 2 |
Ke-Hai Yuan | 2 |
Ling Ling | 2 |
Zhiyong Zhang | 2 |
Amota Ataneka | 1 |
David Kaplan | 1 |
Hongxi Li | 1 |
Kjorte Harra | 1 |
Kyle Cox | 1 |
Liuquan Sun | 1 |
More ▼ |
Publication Type
Reports - Research | 6 |
Journal Articles | 5 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Ming-Chi Tseng – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This study simplifies the seven different cross-lagged panel models (CLPMs) by using the RSEM model for both inter-individual and intra-individual structures. In addition, the study incorporates the newly developed dynamic panel model (DPM), general cross-lagged model (GCLM) and the random intercept auto-regressive moving average (RI-ARMA) model.…
Descriptors: Evaluation Methods, Structural Equation Models, Maximum Likelihood Statistics, Longitudinal Studies
Hongxi Li; Shuwei Li; Liuquan Sun; Xinyuan Song – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Structural equation models offer a valuable tool for delineating the complicated interrelationships among multiple variables, including observed and latent variables. Over the last few decades, structural equation models have successfully analyzed complete and right-censored survival data, exemplified by wide applications in psychological, social,…
Descriptors: Statistical Analysis, Statistical Studies, Structural Equation Models, Intervals
Kjorte Harra; David Kaplan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The present work focuses on the performance of two types of shrinkage priors--the horseshoe prior and the recently developed regularized horseshoe prior--in the context of inducing sparsity in path analysis and growth curve models. Prior research has shown that these horseshoe priors induce sparsity by at least as much as the "gold…
Descriptors: Structural Equation Models, Bayesian Statistics, Regression (Statistics), Statistical Inference
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Grantee Submission, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Fangxing Bai; Ben Kelcey – Society for Research on Educational Effectiveness, 2024
Purpose and Background: Despite the flexibility of multilevel structural equation modeling (MLSEM), a practical limitation many researchers encounter is how to effectively estimate model parameters with typical sample sizes when there are many levels of (potentially disparate) nesting. We develop a method-of-moment corrected maximum likelihood…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Sample Size, Faculty Development
Ben Kelcey; Fangxing Bai; Amota Ataneka; Yanli Xie; Kyle Cox – Society for Research on Educational Effectiveness, 2024
We develop a structural after measurement (SAM) method for structural equation models (SEMs) that accommodates missing data. The results show that the proposed SAM missing data estimator outperforms conventional full information (FI) estimators in terms of convergence, bias, and root-mean-square-error in small-to-moderate samples or large samples…
Descriptors: Structural Equation Models, Research Problems, Error of Measurement, Maximum Likelihood Statistics