NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20256
Since 202420
Audience
Laws, Policies, & Programs
Assessments and Surveys
Torrance Tests of Creative…1
What Works Clearinghouse Rating
Showing 1 to 15 of 20 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Fu Chen; Chang Lu; Ying Cui – Education and Information Technologies, 2024
Successful computer-based assessments for learning greatly rely on an effective learner modeling approach to analyze learner data and evaluate learner behaviors. In addition to explicit learning performance (i.e., product data), the process data logged by computer-based assessments provide a treasure trove of information about how learners solve…
Descriptors: Computer Assisted Testing, Problem Solving, Learning Analytics, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Selcuk Acar; Peter Organisciak; Denis Dumas – Journal of Creative Behavior, 2025
In this three-study investigation, we applied various approaches to score drawings created in response to both Form A and Form B of the Torrance Tests of Creative Thinking-Figural (broadly TTCT-F) as well as the Multi-Trial Creative Ideation task (MTCI). We focused on TTCT-F in Study 1, and utilizing a random forest classifier, we achieved 79% and…
Descriptors: Scoring, Computer Assisted Testing, Models, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
George Kinnear; Paola Iannone; Ben Davies – Educational Studies in Mathematics, 2025
Example-generation tasks have been suggested as an effective way to both promote students' learning of mathematics and assess students' understanding of concepts. E-assessment offers the potential to use example-generation tasks with large groups of students, but there has been little research on this approach so far. Across two studies, we…
Descriptors: Mathematics Skills, Learning Strategies, Skill Development, Student Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Yang Zhen; Xiaoyan Zhu – Educational and Psychological Measurement, 2024
The pervasive issue of cheating in educational tests has emerged as a paramount concern within the realm of education, prompting scholars to explore diverse methodologies for identifying potential transgressors. While machine learning models have been extensively investigated for this purpose, the untapped potential of TabNet, an intricate deep…
Descriptors: Artificial Intelligence, Models, Cheating, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Mo Zhang; Paul Deane; Andrew Hoang; Hongwen Guo; Chen Li – Educational Measurement: Issues and Practice, 2025
In this paper, we describe two empirical studies that demonstrate the application and modeling of keystroke logs in writing assessments. We illustrate two different approaches of modeling differences in writing processes: analysis of mean differences in handcrafted theory-driven features and use of large language models to identify stable personal…
Descriptors: Writing Tests, Computer Assisted Testing, Keyboarding (Data Entry), Writing Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Ulrike Padó; Yunus Eryilmaz; Larissa Kirschner – International Journal of Artificial Intelligence in Education, 2024
Short-Answer Grading (SAG) is a time-consuming task for teachers that automated SAG models have long promised to make easier. However, there are three challenges for their broad-scale adoption: A technical challenge regarding the need for high-quality models, which is exacerbated for languages with fewer resources than English; a usability…
Descriptors: Grading, Automation, Test Format, Computer Assisted Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Aditya Shah; Ajay Devmane; Mehul Ranka; Prathamesh Churi – Education and Information Technologies, 2024
Online learning has grown due to the advancement of technology and flexibility. Online examinations measure students' knowledge and skills. Traditional question papers include inconsistent difficulty levels, arbitrary question allocations, and poor grading. The suggested model calibrates question paper difficulty based on student performance to…
Descriptors: Computer Assisted Testing, Difficulty Level, Grading, Test Construction
Peer reviewed Peer reviewed
Direct linkDirect link
Meijuan Li; Hongyun Liu; Mengfei Cai; Jianlin Yuan – Education and Information Technologies, 2024
In the human-to-human Collaborative Problem Solving (CPS) test, students' problem-solving process reflects the interdependency among partners. The high interdependency in CPS makes it very sensitive to group composition. For example, the group outcome might be driven by a highly competent group member, so it does not reflect all the individual…
Descriptors: Problem Solving, Computer Assisted Testing, Cooperative Learning, Task Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Anna Filighera; Sebastian Ochs; Tim Steuer; Thomas Tregel – International Journal of Artificial Intelligence in Education, 2024
Automatic grading models are valued for the time and effort saved during the instruction of large student bodies. Especially with the increasing digitization of education and interest in large-scale standardized testing, the popularity of automatic grading has risen to the point where commercial solutions are widely available and used. However,…
Descriptors: Cheating, Grading, Form Classes (Languages), Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Wesley Beccaro; Miguel Arjona Ramirez; William Liaw; Heitor Rodrigues Guimaraes – IEEE Transactions on Education, 2024
Contribution: During the lockdown period of the COVID-19 pandemic, online oral exams have become a necessary reality. Considering the possibility of carrying out and recording the oral exam sessions, analyses were conducted to assess how the speaking time ratio and emotional states are affected during the exams. Background: Although many studies…
Descriptors: Oral Language, Emotional Response, Psychological Patterns, Speech Communication
Peer reviewed Peer reviewed
Direct linkDirect link
Markus T. Jansen; Ralf Schulze – Educational and Psychological Measurement, 2024
Thurstonian forced-choice modeling is considered to be a powerful new tool to estimate item and person parameters while simultaneously testing the model fit. This assessment approach is associated with the aim of reducing faking and other response tendencies that plague traditional self-report trait assessments. As a result of major recent…
Descriptors: Factor Analysis, Models, Item Analysis, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Sami Baral; Eamon Worden; Wen-Chiang Lim; Zhuang Luo; Christopher Santorelli; Ashish Gurung; Neil Heffernan – Grantee Submission, 2024
The effectiveness of feedback in enhancing learning outcomes is well documented within Educational Data Mining (EDM). Various prior research have explored methodologies to enhance the effectiveness of feedback to students in various ways. Recent developments in Large Language Models (LLMs) have extended their utility in enhancing automated…
Descriptors: Automation, Scoring, Computer Assisted Testing, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Christopher D. Wilson; Kevin C. Haudek; Jonathan F. Osborne; Zoë E. Buck Bracey; Tina Cheuk; Brian M. Donovan; Molly A. M. Stuhlsatz; Marisol M. Santiago; Xiaoming Zhai – Journal of Research in Science Teaching, 2024
Argumentation is fundamental to science education, both as a prominent feature of scientific reasoning and as an effective mode of learning--a perspective reflected in contemporary frameworks and standards. The successful implementation of argumentation in school science, however, requires a paradigm shift in science assessment from the…
Descriptors: Middle School Students, Competence, Science Process Skills, Persuasive Discourse
Peer reviewed Peer reviewed
Direct linkDirect link
Yang Jiang; Mo Zhang; Jiangang Hao; Paul Deane; Chen Li – Journal of Educational Measurement, 2024
The emergence of sophisticated AI tools such as ChatGPT, coupled with the transition to remote delivery of educational assessments in the COVID-19 era, has led to increasing concerns about academic integrity and test security. Using AI tools, test takers can produce high-quality texts effortlessly and use them to game assessments. It is thus…
Descriptors: Integrity, Artificial Intelligence, Technology Uses in Education, Ethics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hai Li; Wanli Xing; Chenglu Li; Wangda Zhu; Simon Woodhead – Journal of Learning Analytics, 2025
Knowledge tracing (KT) is a method to evaluate a student's knowledge state (KS) based on their historical problem-solving records by predicting the next answer's binary correctness. Although widely applied to closed-ended questions, it lacks a detailed option tracing (OT) method for assessing multiple-choice questions (MCQs). This paper introduces…
Descriptors: Mathematics Tests, Multiple Choice Tests, Computer Assisted Testing, Problem Solving
Previous Page | Next Page »
Pages: 1  |  2