Publication Date
In 2025 | 28 |
Since 2024 | 112 |
Descriptor
Models | 112 |
Data Analysis | 54 |
Artificial Intelligence | 29 |
Data Collection | 27 |
Data Use | 20 |
Algorithms | 19 |
Foreign Countries | 19 |
Prediction | 19 |
Academic Achievement | 16 |
Data | 15 |
Technology Uses in Education | 15 |
More ▼ |
Source
Author
Amanda Goodwin | 2 |
Anand Nayyar | 2 |
Carl F. Falk | 2 |
Chen Li | 2 |
Hiroaki Ogata | 2 |
Matthew Naveiras | 2 |
Mo Zhang | 2 |
Oliver Kuss | 2 |
Paul De Boeck | 2 |
Paul Deane | 2 |
Rwitajit Majumdar | 2 |
More ▼ |
Publication Type
Journal Articles | 97 |
Reports - Research | 83 |
Reports - Evaluative | 11 |
Reports - Descriptive | 8 |
Dissertations/Theses -… | 6 |
Information Analyses | 5 |
Speeches/Meeting Papers | 2 |
Books | 1 |
Tests/Questionnaires | 1 |
Education Level
Audience
Researchers | 2 |
Counselors | 1 |
Students | 1 |
Teachers | 1 |
Location
China | 5 |
Greece | 2 |
Illinois | 2 |
Indiana | 2 |
Japan | 2 |
Arizona | 1 |
Arkansas | 1 |
Australia | 1 |
Brazil | 1 |
California | 1 |
Caribbean | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Big Five Inventory | 1 |
Teaching and Learning… | 1 |
Trends in International… | 1 |
What Works Clearinghouse Rating
David Williamson Shaffer; Yeyu Wang; Andrew Ruis – Journal of Learning Analytics, 2025
Learning is a multimodal process, and learning analytics (LA) researchers can readily access rich learning process data from multiple modalities, including audio-video recordings or transcripts of in-person interactions; logfiles and messages from online activities; and biometric measurements such as eye-tracking, movement, and galvanic skin…
Descriptors: Learning Processes, Learning Analytics, Models, Data
Ali Gohar Qazi; Norbert Pachler – Professional Development in Education, 2025
This paper proposes a conceptual framework enabling the development and adoption of descriptive, diagnostic, predictive and recommendatory data analytics in teacher professional learning by harnessing some of the affordances of digital technologies to convert data into actionable insights. The paper argues for a technology-enhanced approach that…
Descriptors: Faculty Development, Data Analysis, Data Use, Models
Hayat Sahlaoui; El Arbi Abdellaoui Alaoui; Said Agoujil; Anand Nayyar – Education and Information Technologies, 2024
Predicting student performance using educational data is a significant area of machine learning research. However, class imbalance in datasets and the challenge of developing interpretable models can hinder accuracy. This study compares different variations of the Synthetic Minority Oversampling Technique (SMOTE) combined with classification…
Descriptors: Sampling, Classification, Algorithms, Prediction
Yikai Lu; Lingbo Tong; Ying Cheng – Journal of Educational Data Mining, 2024
Knowledge tracing aims to model and predict students' knowledge states during learning activities. Traditional methods like Bayesian Knowledge Tracing (BKT) and logistic regression have limitations in granularity and performance, while deep knowledge tracing (DKT) models often suffer from lacking transparency. This paper proposes a…
Descriptors: Models, Intelligent Tutoring Systems, Prediction, Knowledge Level
Mark W. Isken – INFORMS Transactions on Education, 2025
A staple of many spreadsheet-based management science courses is the use of Excel for activities such as model building, sensitivity analysis, goal seeking, and Monte-Carlo simulation. What might those things look like if carried out using Python? We describe a teaching module in which Python is used to do typical Excel-based modeling and…
Descriptors: Spreadsheets, Models, Programming Languages, Monte Carlo Methods
Paul Prinsloo; Mohammad Khalil; Sharon Slade – Journal of Computing in Higher Education, 2024
Central to the institutionalization of learning analytics is the need to understand and improve student learning. Frameworks guiding the implementation of learning analytics flow from and perpetuate specific understandings of learning. Crucially, they also provide insights into how learning analytics acknowledges and positions itself as entangled…
Descriptors: Learning Analytics, Data, Ecology, Models
Collin Shepley – Journal of Autism and Developmental Disorders, 2024
Program evaluation is an essential practice for providers of behavior analytic services, as it helps providers understand the extent to which they are achieving their intended mission to the community they serve. A proposed method for conducting such evaluations, is through the use of a consecutive case series design, for which cases are…
Descriptors: Program Evaluation, Data Collection, Data Analysis, Evaluation Methods
Majdi Beseiso – TechTrends: Linking Research and Practice to Improve Learning, 2025
Predicting students' success is crucial in educational settings to improve academic performance and prevent dropouts. This study aimed to improve student performance prediction by combining advanced machine learning (ML) approaches. Convolutional Neural Networks (CNNs) and attention mechanisms were used for extracting relevant features from…
Descriptors: Prediction, Success, Academic Achievement, Artificial Intelligence
Allyson Skene; Laura Winer; Erika Kustra – International Journal for Academic Development, 2024
This article explores potential uses, misuses, beneficiaries, and tensions of learning analytics in higher education. While those promoting and using learning analytics generally agree that ethical practice is imperative, and student privacy and rights are important, navigating the complex maze of ethical dilemmas can be challenging, particularly…
Descriptors: Learning Analytics, Higher Education, Ethics, Privacy
Narjes Rohani; Behnam Rohani; Areti Manataki – Journal of Educational Data Mining, 2024
The prediction of student performance and the analysis of students' learning behaviour play an important role in enhancing online courses. By analysing a massive amount of clickstream data that captures student behaviour, educators can gain valuable insights into the factors that influence students' academic outcomes and identify areas of…
Descriptors: Mathematics Education, Models, Prediction, Knowledge Level
Yanzheng Li; Zorka Karanxha – Educational Management Administration & Leadership, 2024
This systematic literature review critically evaluates 14 empirical studies published over a 14 years span (2006-2019) to answer questions about the models and the effects of transformational school leadership on student academic achievement. The analysis of the related literature utilized vote counting and narrative synthesis to delineate the…
Descriptors: Transformational Leadership, Instructional Leadership, Academic Achievement, Models
Xiong Luo – International Journal of Web-Based Learning and Teaching Technologies, 2024
However, although existing models for evaluating the effectiveness of universities provide a large number of modeling solutions, it is difficult to objectively evaluate dynamic coefficients based on the differences in precision ideological and political work systems of different types of universities in the evaluation process of innovative paths…
Descriptors: Educational Research, Ideology, Political Issues, Models
Jennifer Kahn; Shiyan Jiang – Information and Learning Sciences, 2024
Purpose: While designing personally meaningful activities with data technologies can support the development of data literacies, this paper aims to focuses on the overlooked aspect of how learners navigate tensions between personal experiences and data trends. Design/methodology/approach: The authors report on an analysis of three student cases…
Descriptors: Visual Aids, Trend Analysis, Data Science, Secondary School Students
Nancy Montes; Fernanda Luna – UNESCO International Institute for Educational Planning, 2024
This article characterizes and reflects on the possible uses of early warning systems (hereafter, EWS) in the region as effective tools to support educational pathways, whenever they identify risks of dropout, difficulties for the achievement of substantive learning, and the possibility of organizing specific actions. This article was developed in…
Descriptors: Data Collection, Data Use, At Risk Students, Foreign Countries
Lihan Chen; Milica Miocevic; Carl F. Falk – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data pooling is a powerful strategy in empirical research. However, combining multiple datasets often results in a large amount of missing data, as variables that are not present in some datasets effectively contain missing values for all participants in those datasets. Furthermore, data pooling typically leads to a mix of continuous and…
Descriptors: Simulation, Factor Analysis, Models, Statistical Analysis