Publication Date
In 2025 | 9 |
Since 2024 | 45 |
Descriptor
Source
Author
Danielle S. McNamara | 3 |
Mihai Dascalu | 3 |
Guanliang Chen | 2 |
Micah Watanabe | 2 |
Stefan Ruseti | 2 |
Alex Algarra | 1 |
Andrea Renda | 1 |
Andreea Dutulescu | 1 |
Andres Neyem | 1 |
Ashish Gurung | 1 |
Barry Magrill | 1 |
More ▼ |
Publication Type
Journal Articles | 37 |
Reports - Research | 31 |
Reports - Evaluative | 6 |
Dissertations/Theses -… | 3 |
Information Analyses | 3 |
Reports - Descriptive | 2 |
Speeches/Meeting Papers | 2 |
Books | 1 |
Collected Works - General | 1 |
Education Level
Audience
Researchers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Frank Lee; Alex Algarra – Information Systems Education Journal, 2025
This case study examines employee attrition, its detrimental effects on businesses, and the potential of data analytics to address this challenge. By employing Latent Dirichlet Allocation (LDA), a sophisticated NLP technique, we delve into the underlying reasons for employee departures. Additionally, we explore using RapidMiner to develop…
Descriptors: Labor Turnover, Data Analysis, Natural Language Processing, Employees
Liunian Li – ProQuest LLC, 2024
To build an Artificial Intelligence system that can assist us in daily lives, the ability to understand the world around us through visual input is essential. Prior studies train visual perception models by defining concept vocabularies and annotate data against the fixed vocabulary. It is hard to define a comprehensive set of everything, and thus…
Descriptors: Artificial Intelligence, Visual Stimuli, Visual Perception, Models
Kangkang Li; Chengyang Qian; Xianmin Yang – Education and Information Technologies, 2025
In learnersourcing, automatic evaluation of student-generated content (SGC) is significant as it streamlines the evaluation process, provides timely feedback, and enhances the objectivity of grading, ultimately supporting more effective and efficient learning outcomes. However, the methods of aggregating students' evaluations of SGC face the…
Descriptors: Student Developed Materials, Educational Quality, Automation, Artificial Intelligence
Todd Cherner; Teresa S. Foulger; Margaret Donnelly – TechTrends: Linking Research and Practice to Improve Learning, 2025
The ethics surrounding the development and deployment of generative artificial intelligence (genAI) is an important topic as institutions of higher education adopt the technology for educational purposes. Concurrently, stakeholders from various organizations have reviewed the literature about the ethics of genAI and proposed frameworks about it.…
Descriptors: Artificial Intelligence, Natural Language Processing, Decision Making, Models
Teo Susnjak – International Journal of Artificial Intelligence in Education, 2024
A significant body of recent research in the field of Learning Analytics has focused on leveraging machine learning approaches for predicting at-risk students in order to initiate timely interventions and thereby elevate retention and completion rates. The overarching feature of the majority of these research studies has been on the science of…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, At Risk Students
A Method for Generating Course Test Questions Based on Natural Language Processing and Deep Learning
Hei-Chia Wang; Yu-Hung Chiang; I-Fan Chen – Education and Information Technologies, 2024
Assessment is viewed as an important means to understand learners' performance in the learning process. A good assessment method is based on high-quality examination questions. However, generating high-quality examination questions manually by teachers is a time-consuming task, and it is not easy for students to obtain question banks. To solve…
Descriptors: Natural Language Processing, Test Construction, Test Items, Models
Reese Butterfuss; Harold Doran – Educational Measurement: Issues and Practice, 2025
Large language models are increasingly used in educational and psychological measurement activities. Their rapidly evolving sophistication and ability to detect language semantics make them viable tools to supplement subject matter experts and their reviews of large amounts of text statements, such as educational content standards. This paper…
Descriptors: Alignment (Education), Academic Standards, Content Analysis, Concept Mapping
Gamze Türkmen – Journal of Educational Computing Research, 2025
Explainable Artificial Intelligence (XAI) refers to systems that make AI models more transparent, helping users understand how outputs are generated. XAI algorithms are considered valuable in educational research, supporting outcomes like student success, trust, and motivation. Their potential to enhance transparency and reliability in online…
Descriptors: Artificial Intelligence, Natural Language Processing, Trust (Psychology), Electronic Learning
Pierre-Alexandre Balland; Olesya Grabova; J. Scott Marcus; Robert Praas; Andrea Renda – European Union, 2025
This report examines the burgeoning generative artificial intelligence (GenAI) and foundation models landscape within the European Union, and analyses its impact, technological advancements, and regulatory implications. It details the GenAI value chain, identifying key players and investment trends, revealing a significant US dominance. The report…
Descriptors: Artificial Intelligence, Man Machine Systems, Natural Language Processing, Industry
Samah AlKhuzaey; Floriana Grasso; Terry R. Payne; Valentina Tamma – International Journal of Artificial Intelligence in Education, 2024
Designing and constructing pedagogical tests that contain items (i.e. questions) which measure various types of skills for different levels of students equitably is a challenging task. Teachers and item writers alike need to ensure that the quality of assessment materials is consistent, if student evaluations are to be objective and effective.…
Descriptors: Test Items, Test Construction, Difficulty Level, Prediction
Andreea Dutulescu; Stefan Ruseti; Denis Iorga; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
The process of generating challenging and appropriate distractors for multiple-choice questions is a complex and time-consuming task. Existing methods for an automated generation have limitations in proposing challenging distractors, or they fail to effectively filter out incorrect choices that closely resemble the correct answer, share synonymous…
Descriptors: Multiple Choice Tests, Artificial Intelligence, Attention, Natural Language Processing
Erik Voss; Hansun Zhang Waring – TESOL Quarterly: A Journal for Teachers of English to Speakers of Other Languages and of Standard English as a Second Dialect, 2025
Significant advancements in voice chatbots have spurred interest into their role in second language learning (Conium, 2008), particularly their ability to assist in the development of learners' conversation skills in a target language. Many efforts have been made to explore AI's potential to act as conversation partners for language learners. Of…
Descriptors: Artificial Intelligence, Technology Uses in Education, Computer Mediated Communication, Man Machine Systems
Behzad Mirzababaei; Viktoria Pammer-Schindler – IEEE Transactions on Learning Technologies, 2024
In this article, we investigate a systematic workflow that supports the learning engineering process of formulating the starting question for a conversational module based on existing learning materials, specifying the input that transformer-based language models need to function as classifiers, and specifying the adaptive dialogue structure,…
Descriptors: Learning Processes, Electronic Learning, Artificial Intelligence, Natural Language Processing
Paiheng Xu; Jing Liu; Nathan Jones; Julie Cohen; Wei Ai – Annenberg Institute for School Reform at Brown University, 2024
Assessing instruction quality is a fundamental component of any improvement efforts in the education system. However, traditional manual assessments are expensive, subjective, and heavily dependent on observers' expertise and idiosyncratic factors, preventing teachers from getting timely and frequent feedback. Different from prior research that…
Descriptors: Educational Quality, Educational Assessment, Teacher Effectiveness, Natural Language Processing
Rebeckah K. Fussell; Emily M. Stump; N. G. Holmes – Physical Review Physics Education Research, 2024
Physics education researchers are interested in using the tools of machine learning and natural language processing to make quantitative claims from natural language and text data, such as open-ended responses to survey questions. The aspiration is that this form of machine coding may be more efficient and consistent than human coding, allowing…
Descriptors: Physics, Educational Researchers, Artificial Intelligence, Natural Language Processing