NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Tenko Raykov; Ahmed Haddadi; Christine DiStefano; Mohammed Alqabbaa – Educational and Psychological Measurement, 2025
This note is concerned with the study of temporal development in several indices reflecting clustering effects in multilevel designs that are frequently utilized in educational and behavioral research. A latent variable method-based approach is outlined, which can be used to point and interval estimate the growth or decline in important functions…
Descriptors: Multivariate Analysis, Hierarchical Linear Modeling, Educational Research, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Wei Li; Yanli Xie; Dung Pham; Nianbo Dong; Jessaca Spybrook; Benjamin Kelcey – Asia Pacific Education Review, 2024
Cluster randomized trials (CRTs) are commonly used to evaluate the causal effects of educational interventions, where the entire clusters (e.g., schools) are randomly assigned to treatment or control conditions. This study introduces statistical methods for designing and analyzing two-level (e.g., students nested within schools) and three-level…
Descriptors: Research Design, Multivariate Analysis, Randomized Controlled Trials, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Tara Slominski; Oluwatobi O. Odeleye; Jacob W. Wainman; Lisa L. Walsh; Karen Nylund-Gibson; Marsha Ing – CBE - Life Sciences Education, 2024
Mixture modeling is a latent variable (i.e., a variable that cannot be measured directly) approach to quantitatively represent unobserved subpopulations within an overall population. It includes a range of cross-sectional (such as latent class [LCA] or latent profile analysis) and longitudinal (such as latent transition analysis) analyses and is…
Descriptors: Educational Research, Multivariate Analysis, Research Methodology, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Dongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis