NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 202523
Since 2024130
Audience
Teachers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 130 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hyemin Han; Kelsie J. Dawson – Journal of Moral Education, 2024
In the present study, we examined how the perceived attainability and relatability of moral exemplars predicted moral elevation and pleasantness among both adult and college student participants. Data collected from two experiments were analyzed with Bayesian multilevel modeling to explore which factors significantly predicted outcome variables at…
Descriptors: Moral Values, Prediction, Models, Behavior Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Jie Fang; Zhonglin Wen; Kit-Tai Hau – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Currently, dynamic structural equation modeling (DSEM) and residual DSEM (RDSEM) are commonly used in testing intensive longitudinal data (ILD). Researchers are interested in ILD mediation models, but their analyses are challenging. The present paper mathematically derived, empirically compared, and step-by-step demonstrated three types (i.e.,…
Descriptors: Structural Equation Models, Mediation Theory, Data Analysis, Longitudinal Studies
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yusuf Uzun; Mehmet Kayrici – Journal of Education in Science, Environment and Health, 2025
In this study, which focuses on selecting the material and predicting its mechanical behaviors in materials science, an Artificial Neural Network (ANN) was used to predict and simulate the low-speed impact effects of hybrid nano-doped aramid composites. There are not enough studies about open education practices in this field. Since error values…
Descriptors: Artificial Intelligence, Open Education, Energy, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Gyeongcheol Cho; Heungsun Hwang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Generalized structured component analysis (GSCA) is a multivariate method for specifying and examining interrelationships between observed variables and components. Despite its data-analytic flexibility honed over the decade, GSCA always defines every component as a linear function of observed variables, which can be less optimal when observed…
Descriptors: Prediction, Methods, Networks, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Kjorte Harra; David Kaplan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The present work focuses on the performance of two types of shrinkage priors--the horseshoe prior and the recently developed regularized horseshoe prior--in the context of inducing sparsity in path analysis and growth curve models. Prior research has shown that these horseshoe priors induce sparsity by at least as much as the "gold…
Descriptors: Structural Equation Models, Bayesian Statistics, Regression (Statistics), Statistical Inference
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fabricio Trujillo; Marcelo Pozo; Gabriela Suntaxi – Journal of Technology and Science Education, 2025
This paper presents a systematic literature review of using Machine Learning (ML) techniques in higher education career recommendation. Despite the growing interest in leveraging Artificial Intelligence (AI) for personalized academic guidance, no previous reviews have synthesized the diverse methodologies in this field. Following the Kitchenham…
Descriptors: Artificial Intelligence, Higher Education, Career Guidance, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Yangqiuting Li; Chandralekha Singh – Physical Review Physics Education Research, 2024
Structural equation modeling (SEM) is a statistical method widely used in educational research to investigate relationships between variables. SEM models are typically constructed based on theoretical foundations and assessed through fit indices. However, a well-fitting SEM model alone is not sufficient to verify the causal inferences underlying…
Descriptors: Structural Equation Models, Statistical Analysis, Educational Research, Causal Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Frank Lee; Alex Algarra – Information Systems Education Journal, 2025
This case study examines employee attrition, its detrimental effects on businesses, and the potential of data analytics to address this challenge. By employing Latent Dirichlet Allocation (LDA), a sophisticated NLP technique, we delve into the underlying reasons for employee departures. Additionally, we explore using RapidMiner to develop…
Descriptors: Labor Turnover, Data Analysis, Natural Language Processing, Employees
Peer reviewed Peer reviewed
Direct linkDirect link
Tong Zhang; Ermei Lu; Quanming Liao; Deliang Sun – Journal of Psychoeducational Assessment, 2025
Purpose: Academic anxiety is a common phenomenon in the college student population, which has an important impact on students' psychological health and academic performance. Therefore, by exploring the effects of college students' professional commitment and achievement goal orientation variables on academic anxiety, it helps to understand…
Descriptors: College Students, Anxiety, Academic Achievement, Student Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Mahmoud Abdasalam; Ahmad Alzubi; Kolawole Iyiola – Education and Information Technologies, 2025
This study introduces an optimized ensemble deep neural network (Optimized Ensemble Deep-NN) to enhance the accuracy of predicting student grades. This model solves the problem of different and complicated student performance data by using deep neural networks, ensemble learning, and a number of optimization algorithms, such as Adam, SGD, and RMS…
Descriptors: Grades (Scholastic), Prediction, Accuracy, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Zhenchang Xia; Nan Dong; Jia Wu; Chuanguo Ma – IEEE Transactions on Learning Technologies, 2024
As an excellent means of improving students' effective learning, knowledge tracking can assess the level of knowledge mastery and discover latent learning patterns based on students' historical learning evaluation of related questions. The advantage of knowledge tracking is that it can better organize and adjust students' learning plans, provide…
Descriptors: Graphs, Artificial Intelligence, Multivariate Analysis, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Abdessamad Chanaa; Nour-eddine El Faddouli – Smart Learning Environments, 2024
The recommendation is an active area of scientific research; it is also a challenging and fundamental problem in online education. However, classical recommender systems usually suffer from item cold-start issues. Besides, unlike other fields like e-commerce or entertainment, e-learning recommendations must ensure that learners have the adequate…
Descriptors: Artificial Intelligence, Prerequisites, Metadata, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Adrianne L. Jenner; Pamela M. Burrage – International Journal of Mathematical Education in Science and Technology, 2024
Mathematics provides us with tools to capture and explain phenomena in everyday biology, even at the nanoscale. The most regularly applied technique to biology is differential equations. In this article, we seek to present how differential equation models of biological phenomena, particularly the flow through ion channels, can be used to motivate…
Descriptors: Cytology, Mathematical Models, Prediction, Equations (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Venera Nakhipova; Yerzhan Kerimbekov; Zhanat Umarova; Halil ibrahim Bulbul; Laura Suleimenova; Elvira Adylbekova – International Journal of Information and Communication Technology Education, 2024
This article introduces a novel method that integrates collaborative filtering into the naive Bayes model to enhance predicting student academic performance. The combined approach leverages collaborative user behavior analysis and probabilistic modeling, showing promising results in improved prediction precision. Collaborative Filtering explores…
Descriptors: Academic Achievement, Prediction, Cooperation, Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Jihong Zhang; Jonathan Templin; Xinya Liang – Journal of Educational Measurement, 2024
Recently, Bayesian diagnostic classification modeling has been becoming popular in health psychology, education, and sociology. Typically information criteria are used for model selection when researchers want to choose the best model among alternative models. In Bayesian estimation, posterior predictive checking is a flexible Bayesian model…
Descriptors: Bayesian Statistics, Cognitive Measurement, Models, Classification
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9