NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20258
Since 202439
Audience
Laws, Policies, & Programs
G I Bill1
What Works Clearinghouse Rating
Showing 1 to 15 of 39 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Robin Clausen – Grantee Submission, 2024
Early warning systems (EWS) using analytical tools that have been trained against prior years' data, can reliably predict dropout risk in individual students so that educators may intervene early to help avert this from happening. Risk profiles for dropouts aren't always useful since students often do not conform to the profiles. Researchers with…
Descriptors: Early Intervention, Predictor Variables, Potential Dropouts, At Risk Students
Peer reviewed Peer reviewed
Direct linkDirect link
Patricia Everaert; Evelien Opdecam; Hans van der Heijden – Accounting Education, 2024
In this paper, we examine whether early warning signals from accounting courses (such as early engagement and early formative performance) are predictive of first-year progression outcomes, and whether this data is more predictive than personal data (such as gender and prior achievement). Using a machine learning approach, results from a sample of…
Descriptors: Accounting, Business Education, Artificial Intelligence, College Freshmen
Azman Sabet – ProQuest LLC, 2024
Objective: Accelerated Second-Degree (ASD) programs play a crucial role in addressing the nursing shortage. However, when ASD students drop out, it negatively impacts all involved parties. Despite facing similar challenges as adult learners, some ASD students successfully graduate while others do not. By comparing and contrasting these two groups,…
Descriptors: At Risk Students, Nursing Students, Acceleration (Education), Academic Degrees
S. Colby Woods; Michael Gottfried; Kevin Gee – Annenberg Institute for School Reform at Brown University, 2024
Students in the foster care system tend to have lower educational outcomes than their peers, including more frequent disciplinary events. However, few studies have explored how transitions into and out of foster care placements are associated with educational outcomes. Using longitudinal data from four California school districts, this study…
Descriptors: Foster Care, Discipline, Student Behavior, Attendance
Peer reviewed Peer reviewed
Direct linkDirect link
Stefanie Findeisen; Alexander Brodsky; Christian Michaelis; Beatrice Schimmelpenningh; Jürgen Seifried – Empirical Research in Vocational Education and Training, 2024
Evidence on the extent to which dropout intention can serve as a valid predictor of dropout decisions remains scarce. This study first presents the results of a systematic literature review of 14 studies examining the relationship between dropout intention and actual dropout in post-secondary education (vocational education and training [VET] or…
Descriptors: At Risk Students, Intention, Dropouts, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Dahir Abdi Ali; Ali Mohamud Hussein – Journal of Applied Research in Higher Education, 2024
Purpose: The main purpose of this study is to evaluate the extent of dropout students and identify the relationship between risk factors of dropout and the survival time of students. Design/methodology/approach: The Kaplan-Meier estimator (KM), also known as the product-limit technique, is a nonparametric model function that is commonly used in…
Descriptors: Foreign Countries, College Students, At Risk Students, Potential Dropouts
Peer reviewed Peer reviewed
Direct linkDirect link
Miriam G. Clark; Benjamin G. Gibbs – Educational Policy, 2025
Many U.S. schools utilize grade retention (repeating grades when not meeting academic benchmarks) to allow more time for students to learn grade level material. However, some research suggests retention may increase inequalities and not help students progress. We use national data (Future of Families and Child Wellbeing Study 2014-2017) and…
Descriptors: Student Promotion, At Risk Students, Grade Repetition, Metropolitan Areas
Peer reviewed Peer reviewed
Direct linkDirect link
Elizabeth Spencer Kelley; Lindsey Peters-Sanders; Houston Sanders; Keri Madsen; Yagmur Seven; Howard Goldstein – Grantee Submission, 2025
Introduction: The current study examined the extent to which static and dynamic measures of vocabulary and word learning predicted response and identified poor responders to a vocabulary intervention. Methods: Participants were 46 preschool children in classrooms randomly assigned to complete the Story Friends intervention in two…
Descriptors: Vocabulary Development, Preschool Children, Preschool Education, Predictor Variables
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chuan Cai; Adam Fleischhacker – Journal of Educational Data Mining, 2024
We propose a novel approach to address the issue of college student attrition by developing a hybrid model that combines a structural neural network with a piecewise exponential model. This hybrid model not only shows the potential to robustly identify students who are at high risk of dropout, but also provides insights into which factors are most…
Descriptors: College Students, Student Attrition, Dropouts, Potential Dropouts
Peer reviewed Peer reviewed
Direct linkDirect link
Marcell Nagy; Roland Molontay – International Journal of Artificial Intelligence in Education, 2024
Student drop-out is one of the most burning issues in STEM higher education, which induces considerable social and economic costs. Using machine learning tools for the early identification of students at risk of dropping out has gained a lot of interest recently. However, there has been little discussion on dropout prediction using interpretable…
Descriptors: Dropout Characteristics, Dropout Research, Intervention, At Risk Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Stephen M. McPherson – SRATE Journal, 2025
This quantitative based applied research study examined data collected fromstudents who have withdrawnfromor completed aneducator preparation program (EPP) ina small rural public community college in WestVirginia. This study compared studentretention rates with Frontier andRemote (FAR) designation by home zip code. These data informedthe research…
Descriptors: Teacher Education, Rural Schools, Public Colleges, Community Colleges
Peer reviewed Peer reviewed
Direct linkDirect link
Oda Charlotte Larsen Saetre; Serap Keles; Thormod Idsoe – Scandinavian Journal of Educational Research, 2024
We investigated changes in youths' intentions to quit school after following a group-based cognitive behaviour therapy (CBT) based intervention for depressed adolescents in upper secondary school: the Adolescent Coping with Depression Course (ACDC). Data were collected from 228 youths, 133 of whom received the 14-week ACDC intervention and 95 who…
Descriptors: Depression (Psychology), Correlation, Intention, Dropouts
Peer reviewed Peer reviewed
Direct linkDirect link
Umar Bin Qushem; Solomon Sunday Oyelere; Gökhan Akçapinar; Rogers Kaliisa; Mikko-Jussi Laakso – Technology, Knowledge and Learning, 2024
Predicting academic performance for students majoring in computer science has long been a significant field of research in computing education. Previous studies described that accurate prediction of students' early-stage performance could identify low-performing students and take corrective action to improve performance. Besides, adopting machine…
Descriptors: Predictor Variables, Learning Analytics, At Risk Students, Computer Science
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kerstin Wagner; Agathe Merceron; Petra Sauer; Niels Pinkwart – Journal of Educational Data Mining, 2024
In this paper, we present an extended evaluation of a course recommender system designed to support students who struggle in the first semesters of their studies and are at risk of dropping out. The system, which was developed in earlier work using a student-centered design, is based on the explainable k-nearest neighbor algorithm and recommends a…
Descriptors: At Risk Students, Algorithms, Foreign Countries, Course Selection (Students)
Peer reviewed Peer reviewed
Direct linkDirect link
Lucia Uguina-Gadella; Iria Estevez-Ayres; Jesus Arias Fisteus; Carlos Alario-Hoyos; Carlos Delgado Kloos – IEEE Transactions on Learning Technologies, 2024
Students learn not only directly from their teachers and books, but also by using their computers, tablets, and phones. Monitoring these learning environments creates new opportunities for teachers to track students' progress. In particular, this article is based on gathering real-time events as students interact with learning tools and materials…
Descriptors: Predictor Variables, Academic Achievement, Computer Assisted Instruction, Electronic Learning
Previous Page | Next Page »
Pages: 1  |  2  |  3