NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Chih-Yueh Chou; Wei-Han Chen – Educational Technology & Society, 2025
Studies have shown that students have different help-seeking behavior patterns and tendencies and furthermore, that students with certain help-seeking behavior patterns and tendencies may have poor performance (i.e., at-risk students). This study applied an educational data mining approach, including clustering and classification, to analyze…
Descriptors: Student Behavior, Help Seeking, Problem Solving, Information Retrieval
Peer reviewed Peer reviewed
Direct linkDirect link
Carina Büscher – International Journal of Science and Mathematics Education, 2025
Computational thinking (CT) is becoming increasingly important as a learning content. Subject-integrated approaches aim to develop CT within other subjects like mathematics. The question is how exactly CT can be integrated and learned in mathematics classrooms. In a case study involving 12 sixth-grade learners, CT activities were explored that…
Descriptors: Mathematics Instruction, Thinking Skills, Teaching Methods, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Abdullahi Yusuf; Norah Md Noor; Shamsudeen Bello – Education and Information Technologies, 2024
Studies examining students' learning behavior predominantly employed rich video data as their main source of information due to the limited knowledge of computer vision and deep learning algorithms. However, one of the challenges faced during such observation is the strenuous task of coding large amounts of video data through repeated viewings. In…
Descriptors: Learning Analytics, Student Behavior, Video Technology, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Guozhu Ding; Xiangyi Shi; Shan Li – Education and Information Technologies, 2024
In this study, we developed a classification system of programming errors based on the historical data of 680,540 programming records collected on the Online Judge platform. The classification system described six types of programming errors (i.e., syntax, logical, type, writing, misunderstanding, and runtime errors) and their connections with…
Descriptors: Programming, Computer Science Education, Classification, Graphs
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Marianthi Grizioti; Chronis Kynigos – Informatics in Education, 2024
Even though working with data is as important as coding for understanding and dealing with complex problems across multiple fields, it has received very little attention in the context of Computational Thinking. This paper discusses an approach for bridging the gap between Computational Thinking with Data Science by employing and studying…
Descriptors: Computation, Thinking Skills, Data Science, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Yun Huang; Christian Dieter Schunn; Julio Guerra; Peter L. Brusilovsky – ACM Transactions on Computing Education, 2024
Programming skills are increasingly important to the current digital economy, yet these skills have long been regarded as challenging to acquire. A central challenge in learning programming skills involves the simultaneous use of multiple component skills. This article investigates why students struggle with integrating component skills--a…
Descriptors: Programming, Computer Science Education, Error Patterns, Classification
UK Department for Education, 2024
This report sets out the findings of the technical development work completed as part of the Use Cases for Generative AI in Education project, commissioned by the Department for Education (DfE) in September 2023. It has been published alongside the User Research Report, which sets out the findings from the ongoing user engagement activity…
Descriptors: Artificial Intelligence, Technology Uses in Education, Computer Software, Computational Linguistics