Publication Date
In 2025 | 1 |
Since 2024 | 9 |
Descriptor
Source
Society for Research on… | 2 |
Structural Equation Modeling:… | 2 |
Journal of Research on… | 1 |
Practical Assessment,… | 1 |
ProQuest LLC | 1 |
Research Synthesis Methods | 1 |
Sociological Methods &… | 1 |
Author
Atsushi Miyaoka | 1 |
Augustin Kelava | 1 |
Ben Kelcey | 1 |
Christian Röver | 1 |
David Kaplan | 1 |
David Rindskopf | 1 |
Denisa Gandara | 1 |
Edoardo Costantini | 1 |
Elena Badillo-Goicoechea | 1 |
Elizabeth A. Stuart | 1 |
Elizabeth Petraglia | 1 |
More ▼ |
Publication Type
Journal Articles | 6 |
Reports - Research | 6 |
Reports - Evaluative | 2 |
Dissertations/Theses -… | 1 |
Education Level
High Schools | 1 |
Secondary Education | 1 |
Audience
Location
Iowa | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Education Longitudinal Study… | 1 |
What Works Clearinghouse Rating
Christian Röver; David Rindskopf; Tim Friede – Research Synthesis Methods, 2024
The trace plot is seldom used in meta-analysis, yet it is a very informative plot. In this article, we define and illustrate what the trace plot is, and discuss why it is important. The Bayesian version of the plot combines the posterior density of [tau], the between-study standard deviation, and the shrunken estimates of the study effects as a…
Descriptors: Graphs, Meta Analysis, Bayesian Statistics, Visualization
Michael Nagel; Lukas Fischer; Tim Pawlowski; Augustin Kelava – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Bayesian estimations of complex regression models with high-dimensional parameter spaces require advanced priors, capable of addressing both sparsity and multicollinearity in the data. The Dirichlet-horseshoe, a new prior distribution that combines and expands on the concepts of the regularized horseshoe and the Dirichlet-Laplace priors, is a…
Descriptors: Bayesian Statistics, Regression (Statistics), Computation, Statistical Distributions
Edoardo Costantini; Kyle M. Lang; Tim Reeskens; Klaas Sijtsma – Sociological Methods & Research, 2025
Including a large number of predictors in the imputation model underlying a multiple imputation (MI) procedure is one of the most challenging tasks imputers face. A variety of high-dimensional MI techniques can help, but there has been limited research on their relative performance. In this study, we investigated a wide range of extant…
Descriptors: Statistical Analysis, Social Science Research, Predictor Variables, Sociology
Karyssa A. Courey; Frederick L. Oswald; Steven A. Culpepper – Practical Assessment, Research & Evaluation, 2024
Historically, organizational researchers have fully embraced frequentist statistics and null hypothesis significance testing (NHST). Bayesian statistics is an underused alternative paradigm offering numerous benefits for organizational researchers and practitioners: e.g., accumulating direct evidence for the null hypothesis (vs. 'fail to reject…
Descriptors: Bayesian Statistics, Statistical Distributions, Researchers, Institutional Research
Denisa Gandara; Hadis Anahideh – Society for Research on Educational Effectiveness, 2024
Background/Context: Predictive analytics has emerged as an indispensable tool in the education sector, offering insights that can improve student outcomes and inform more equitable policies (Friedler et al., 2019; Kleinberg et al., 2018). However, the widespread adoption of predictive models is hindered by several challenges, including the lack of…
Descriptors: Prediction, Learning Analytics, Ethics, Statistical Bias
Erin W. Post – ProQuest LLC, 2024
Multivariate count data is ubiquitous in many areas of research including the physical, biological, and social sciences. These data are traditionally modeled with the Dirichlet Multinomial distribution (DM). A new, more flexible Dirichlet-Tree Multinomial (DTM) model is gaining in popularity. Here, we consider Bayesian DTM regression models. Our…
Descriptors: Regression (Statistics), Multivariate Analysis, Statistical Distributions, Bayesian Statistics
Kjorte Harra; David Kaplan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The present work focuses on the performance of two types of shrinkage priors--the horseshoe prior and the recently developed regularized horseshoe prior--in the context of inducing sparsity in path analysis and growth curve models. Prior research has shown that these horseshoe priors induce sparsity by at least as much as the "gold…
Descriptors: Structural Equation Models, Bayesian Statistics, Regression (Statistics), Statistical Inference
Robert B. Olsen; Larry L. Orr; Stephen H. Bell; Elizabeth Petraglia; Elena Badillo-Goicoechea; Atsushi Miyaoka; Elizabeth A. Stuart – Journal of Research on Educational Effectiveness, 2024
Multi-site randomized controlled trials (RCTs) provide unbiased estimates of the average impact in the study sample. However, their ability to accurately predict the impact for individual sites outside the study sample, to inform local policy decisions, is largely unknown. To extend prior research on this question, we analyzed six multi-site RCTs…
Descriptors: Accuracy, Predictor Variables, Randomized Controlled Trials, Regression (Statistics)
Fangxing Bai; Ben Kelcey – Society for Research on Educational Effectiveness, 2024
Purpose and Background: Despite the flexibility of multilevel structural equation modeling (MLSEM), a practical limitation many researchers encounter is how to effectively estimate model parameters with typical sample sizes when there are many levels of (potentially disparate) nesting. We develop a method-of-moment corrected maximum likelihood…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Sample Size, Faculty Development