NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Muhammad Aslam – Measurement: Interdisciplinary Research and Perspectives, 2025
The existing algorithm employing the log-normal distribution lacks applicability in generating imprecise data. This paper addresses this limitation by first introducing the log-normal distribution as a means to handle imprecise data. Subsequently, we leverage the neutrosophic log-normal distribution to devise an algorithm specifically tailored for…
Descriptors: Statistical Distributions, Algorithms, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Abdul Haq – Measurement: Interdisciplinary Research and Perspectives, 2024
This article introduces an innovative sampling scheme, the median sampling (MS), utilizing individual observations over time to efficiently estimate the mean of a process characterized by a symmetric (non-uniform) probability distribution. The mean estimator based on MS is not only unbiased but also boasts enhanced precision compared to its simple…
Descriptors: Sampling, Innovation, Computation, Probability
Claire Miller – ProQuest LLC, 2024
Data are everywhere. Data collected from samples are often reported in the form of polls, medical studies, and advertisement information and an understanding of sampling distributions and statistical inference is important for evaluating data-based claims (Bargagliotti et al., 2020). Despite the importance of understanding statistical inference…
Descriptors: Novices, Thinking Skills, Sampling, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Vinay Kumar Yadav; Shakti Prasad – Measurement: Interdisciplinary Research and Perspectives, 2024
In sample survey analysis, accurate population mean estimation is an important task, but traditional approaches frequently ignore the intricacies of real-world data, leading to biassed results. In order to handle uncertainties, indeterminacies, and ambiguity, this work presents an innovative approach based on neutrosophic statistics. We proposed…
Descriptors: Sampling, Statistical Bias, Predictor Variables, Predictive Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Ernesto Sánchez; Victor Nozair García-Ríos; Francisco Sepúlveda – Educational Studies in Mathematics, 2024
Sampling distributions are fundamental for statistical inference, yet their abstract nature poses challenges for students. This research investigates the development of high school students' conceptions of sampling distribution through informal significance tests with the aid of digital technology. The study focuses on how technological tools…
Descriptors: High School Students, Concept Formation, Thinking Skills, Skill Development
Peer reviewed Peer reviewed
Direct linkDirect link
Giada Spaccapanico Proietti; Mariagiulia Matteucci; Stefania Mignani; Bernard P. Veldkamp – Journal of Educational and Behavioral Statistics, 2024
Classical automated test assembly (ATA) methods assume fixed and known coefficients for the constraints and the objective function. This hypothesis is not true for the estimates of item response theory parameters, which are crucial elements in test assembly classical models. To account for uncertainty in ATA, we propose a chance-constrained…
Descriptors: Automation, Computer Assisted Testing, Ambiguity (Context), Item Response Theory