NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 13 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Michael A. Levine; Huan Chen; Ericka L. Wodka; Brian S. Caffo; Joshua B. Ewen – Journal of Autism and Developmental Disorders, 2025
Background: The Wechsler Intelligence Scale for Children (WISC) employs a hierarchical model of general intelligence in which index scores separate out different clinically-relevant aspects of intelligence; the test is designed such that index scores are statistically independent from one another within the normative sample. Whether or not the…
Descriptors: Autism Spectrum Disorders, Intelligence, Vertical Organization, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Yicong Zheng; Aike Shi; Xiaonan L. Liu – npj Science of Learning, 2024
This Perspective article expands on a working memory-dependent dual-process model, originally proposed by Zheng et al., to elucidate individual differences in the testing effect. This model posits that the testing effect comprises two processes: retrieval-attempt and post-retrieval re-encoding. We substantiate this model with empirical evidence…
Descriptors: Short Term Memory, Models, Individual Differences, Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Wuji Lin; Chenxi Lv; Jiejie Liao; Yuan Hu; Yutong Liu; Jingyuan Lin – npj Science of Learning, 2024
The debate about whether the capacity of working memory (WM) varies with the complexity of memory items continues. This study employed novel experimental materials to investigate the role of complexity in WM capacity. Across seven experiments, we explored the relationship between complexity and WM capacity. The results indicated that the…
Descriptors: Short Term Memory, Difficulty Level, Retention (Psychology), Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Yuang Wei; Bo Jiang – IEEE Transactions on Learning Technologies, 2024
Understanding student cognitive states is essential for assessing human learning. The deep neural networks (DNN)-inspired cognitive state prediction method improved prediction performance significantly; however, the lack of explainability with DNNs and the unitary scoring approach fail to reveal the factors influencing human learning. Identifying…
Descriptors: Cognitive Mapping, Models, Prediction, Short Term Memory
Peer reviewed Peer reviewed
Direct linkDirect link
Salvatore G. Garofalo – Journal of Science Education and Technology, 2025
The initial learning experience is a critical opportunity to support conceptual understanding of abstract STEM concepts. Although hands-on activities and physical three-dimensional models are beneficial, they are seldom utilized and are replaced increasingly by digital simulations and laboratory exercises presented on touchscreen tablet computers.…
Descriptors: High School Freshmen, Science Instruction, Chemistry, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Jinnie Shin; Bowen Wang; Wallace N. Pinto Junior; Mark J. Gierl – Large-scale Assessments in Education, 2024
The benefits of incorporating process information in a large-scale assessment with the complex micro-level evidence from the examinees (i.e., process log data) are well documented in the research across large-scale assessments and learning analytics. This study introduces a deep-learning-based approach to predictive modeling of the examinee's…
Descriptors: Prediction, Models, Problem Solving, Performance
Peer reviewed Peer reviewed
Direct linkDirect link
Houssam El Aouifi; Mohamed El Hajji; Youssef Es-Saady – Education and Information Technologies, 2024
Dropout refers to the phenomenon of students leaving school before completing their degree or program of study. Dropout is a major concern for educational institutions, as it affects not only the students themselves but also the institutions' reputation and funding. Dropout can occur for a variety of reasons, including academic, financial,…
Descriptors: At Risk Students, Potential Dropouts, Identification, Influences
Peer reviewed Peer reviewed
Direct linkDirect link
Caroline F. Rowland; Amy Bidgood; Gary Jones; Andrew Jessop; Paula Stinson; Julian M. Pine; Samantha Durrant; Michelle S. Peter – Language Learning, 2025
A strong predictor of children's language is performance on non-word repetition (NWR) tasks. However, the basis of this relationship remains unknown. Some suggest that NWR tasks measure phonological working memory, which then affects language growth. Others argue that children's knowledge of language/language experience affects NWR performance. A…
Descriptors: Vocabulary Development, Comparative Analysis, Computational Linguistics, Language Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Ashima Kukkar; Rajni Mohana; Aman Sharma; Anand Nayyar – Education and Information Technologies, 2024
In the profession of education, predicting students' academic success is an essential responsibility. This study introduces a novel methodology for predicting students' pass or fail outcome in certain courses. The system utilises academic, demographic, emotional, and VLE sequence information of students. Traditional prediction methods often…
Descriptors: Predictor Variables, Academic Achievement, Pass Fail Grading, Long Term Memory
Peer reviewed Peer reviewed
Direct linkDirect link
Ugur Sener; Salvatore Joseph Terregrossa – SAGE Open, 2024
The aim of the study is the development of methodology for accurate estimation of electric vehicle demand; which is paramount regarding various aspects of the firms decision-making such as optimal price, production level, and corresponding amounts of capital and labor; as well as supply chain, inventory control, capital financing, and operational…
Descriptors: Motor Vehicles, Artificial Intelligence, Prediction, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Aislinn Keogh; Simon Kirby; Jennifer Culbertson – Cognitive Science, 2024
General principles of human cognition can help to explain why languages are more likely to have certain characteristics than others: structures that are difficult to process or produce will tend to be lost over time. One aspect of cognition that is implicated in language use is working memory--the component of short-term memory used for temporary…
Descriptors: Language Variation, Learning Processes, Short Term Memory, Schemata (Cognition)
Peer reviewed Peer reviewed
Direct linkDirect link
Emiko Tsutsumi; Yiming Guo; Ryo Kinoshita; Maomi Ueno – IEEE Transactions on Learning Technologies, 2024
Knowledge tracing (KT), the task of tracking the knowledge state of a student over time, has been assessed actively by artificial intelligence researchers. Recent reports have described that Deep-IRT, which combines item response theory (IRT) with a deep learning method, provides superior performance. It can express the abilities of each student…
Descriptors: Item Response Theory, Academic Ability, Intelligent Tutoring Systems, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Sohyun An Kim; Connie Kasari – Journal of Autism and Developmental Disorders, 2025
While working memory (WM) is a powerful predictor for children's school outcomes, autistic children are more likely to experience delays. This study compared autistic children and their neurotypical peers' WM development over their elementary school years, including relative growth and period of plasticity. Using a nationally-representative…
Descriptors: Elementary School Students, Autism Spectrum Disorders, Students with Disabilities, Student Development