NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Beth Chance; Karen McGaughey; Sophia Chung; Alex Goodman; Soma Roy; Nathan Tintle – Journal of Statistics and Data Science Education, 2025
"Simulation-based inference" is often considered a pedagogical strategy for helping students develop inferential reasoning, for example, giving them a visual and concrete reference for deciding whether the observed statistic is unlikely to happen by chance alone when the null hypothesis is true. In this article, we highlight for teachers…
Descriptors: Simulation, Sampling, Randomized Controlled Trials, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Adrian Quintero; Emmanuel Lesaffre; Geert Verbeke – Journal of Educational and Behavioral Statistics, 2024
Bayesian methods to infer model dimensionality in factor analysis generally assume a lower triangular structure for the factor loadings matrix. Consequently, the ordering of the outcomes influences the results. Therefore, we propose a method to infer model dimensionality without imposing any prior restriction on the loadings matrix. Our approach…
Descriptors: Bayesian Statistics, Factor Analysis, Factor Structure, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
James Ohisei Uanhoro – Educational and Psychological Measurement, 2024
Accounting for model misspecification in Bayesian structural equation models is an active area of research. We present a uniquely Bayesian approach to misspecification that models the degree of misspecification as a parameter--a parameter akin to the correlation root mean squared residual. The misspecification parameter can be interpreted on its…
Descriptors: Bayesian Statistics, Structural Equation Models, Simulation, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Shunji Wang; Katerina M. Marcoulides; Jiashan Tang; Ke-Hai Yuan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A necessary step in applying bi-factor models is to evaluate the need for domain factors with a general factor in place. The conventional null hypothesis testing (NHT) was commonly used for such a purpose. However, the conventional NHT meets challenges when the domain loadings are weak or the sample size is insufficient. This article proposes…
Descriptors: Hypothesis Testing, Error of Measurement, Comparative Analysis, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Charlotte Z. Mann; Adam C. Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2025
Combining observational and experimental data for causal inference can improve treatment effect estimation. However, many observational data sets cannot be released due to data privacy considerations, so one researcher may not have access to both experimental and observational data. Nonetheless, a small amount of risk of disclosing sensitive…
Descriptors: Causal Models, Statistical Analysis, Privacy, Risk
Peer reviewed Peer reviewed
Direct linkDirect link
Saijun Zhao; Zhiyong Zhang; Hong Zhang – Grantee Submission, 2024
Mediation analysis is widely applied in various fields of science, such as psychology, epidemiology, and sociology. In practice, many psychological and behavioral phenomena are dynamic, and the corresponding mediation effects are expected to change over time. However, most existing mediation methods assume a static mediation effect over time,…
Descriptors: Bayesian Statistics, Statistical Inference, Longitudinal Studies, Attribution Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Saijun Zhao; Zhiyong Zhang; Hong Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Mediation analysis is widely applied in various fields of science, such as psychology, epidemiology, and sociology. In practice, many psychological and behavioral phenomena are dynamic, and the corresponding mediation effects are expected to change over time. However, most existing mediation methods assume a static mediation effect over time,…
Descriptors: Bayesian Statistics, Statistical Inference, Longitudinal Studies, Attribution Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Yan Xia; Selim Havan – Educational and Psychological Measurement, 2024
Although parallel analysis has been found to be an accurate method for determining the number of factors in many conditions with complete data, its application under missing data is limited. The existing literature recommends that, after using an appropriate multiple imputation method, researchers either apply parallel analysis to every imputed…
Descriptors: Data Interpretation, Factor Analysis, Statistical Inference, Research Problems
Peer reviewed Peer reviewed
Direct linkDirect link
Mingya Huang; David Kaplan – Journal of Educational and Behavioral Statistics, 2025
The issue of model uncertainty has been gaining interest in education and the social sciences community over the years, and the dominant methods for handling model uncertainty are based on Bayesian inference, particularly, Bayesian model averaging. However, Bayesian model averaging assumes that the true data-generating model is within the…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Statistical Inference, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Per Nilsson; Andreas Eckert – Mathematical Thinking and Learning: An International Journal, 2024
This study contributes to the call for influencing practice by increasing attention to how learning environments can be designed to support learning in statistical inference. We report on a design experiment in secondary school (students 14-16 years old), that resulted in a set of lessons with the learning goal of teaching students how to apply…
Descriptors: Mathematics Instruction, Teaching Methods, Hypothesis Testing, Secondary School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Ernesto Sánchez; Victor Nozair García-Ríos; Francisco Sepúlveda – Educational Studies in Mathematics, 2024
Sampling distributions are fundamental for statistical inference, yet their abstract nature poses challenges for students. This research investigates the development of high school students' conceptions of sampling distribution through informal significance tests with the aid of digital technology. The study focuses on how technological tools…
Descriptors: High School Students, Concept Formation, Thinking Skills, Skill Development