NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hamzeh Ghasemzadeh; Robert E. Hillman; Daryush D. Mehta – Journal of Speech, Language, and Hearing Research, 2024
Purpose: Many studies using machine learning (ML) in speech, language, and hearing sciences rely upon cross-validations with single data splitting. This study's first purpose is to provide quantitative evidence that would incentivize researchers to instead use the more robust data splitting method of nested k-fold cross-validation. The second…
Descriptors: Artificial Intelligence, Speech Language Pathology, Statistical Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Charlotte Z. Mann; Adam C. Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2025
Combining observational and experimental data for causal inference can improve treatment effect estimation. However, many observational data sets cannot be released due to data privacy considerations, so one researcher may not have access to both experimental and observational data. Nonetheless, a small amount of risk of disclosing sensitive…
Descriptors: Causal Models, Statistical Analysis, Privacy, Risk
Peer reviewed Peer reviewed
Direct linkDirect link
Jaylin Lowe; Charlotte Z. Mann; Jiaying Wang; Adam Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2024
Recent methods have sought to improve precision in randomized controlled trials (RCTs) by utilizing data from large observational datasets for covariate adjustment. For example, consider an RCT aimed at evaluating a new algebra curriculum, in which a few dozen schools are randomly assigned to treatment (new curriculum) or control (standard…
Descriptors: Randomized Controlled Trials, Middle School Mathematics, Middle School Students, Middle Schools