NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20253
Since 202417
Audience
Researchers1
Location
Texas1
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal…2
What Works Clearinghouse Rating
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yi Feng – Asia Pacific Education Review, 2024
Causal inference is a central topic in education research, although oftentimes it relies on observational studies, which makes causal identification methodologically challenging. This manuscript introduces causal graphs as a powerful language for elucidating causal theories and an effective tool for causal identification analysis. It discusses…
Descriptors: Causal Models, Graphs, Educational Research, Educational Researchers
Peer reviewed Peer reviewed
Direct linkDirect link
Wendy Chan – Asia Pacific Education Review, 2024
As evidence from evaluation and experimental studies continue to influence decision and policymaking, applied researchers and practitioners require tools to derive valid and credible inferences. Over the past several decades, research in causal inference has progressed with the development and application of propensity scores. Since their…
Descriptors: Probability, Scores, Causal Models, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Julian Schuessler; Peter Selb – Sociological Methods & Research, 2025
Directed acyclic graphs (DAGs) are now a popular tool to inform causal inferences. We discuss how DAGs can also be used to encode theoretical assumptions about nonprobability samples and survey nonresponse and to determine whether population quantities including conditional distributions and regressions can be identified. We describe sources of…
Descriptors: Data Collection, Graphs, Error of Measurement, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Lucy D'Agostino McGowan; Travis Gerke; Malcolm Barrett – Journal of Statistics and Data Science Education, 2024
This article introduces a collection of four datasets, similar to Anscombe's quartet, that aim to highlight the challenges involved when estimating causal effects. Each of the four datasets is generated based on a distinct causal mechanism: the first involves a collider, the second involves a confounder, the third involves a mediator, and the…
Descriptors: Statistics Education, Programming Languages, Statistical Inference, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Steffen Erickson – Society for Research on Educational Effectiveness, 2024
Background: Structural Equation Modeling (SEM) is a powerful and broadly utilized statistical framework. Researchers employ these models to dissect relationships into direct, indirect, and total effects (Bollen, 1989). These models unpack the "black box" issues within cause-and-effect studies by examining the underlying theoretical…
Descriptors: Structural Equation Models, Causal Models, Research Methodology, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Peter Z. Schochet – Journal of Educational and Behavioral Statistics, 2025
Random encouragement designs evaluate treatments that aim to increase participation in a program or activity. These randomized controlled trials (RCTs) can also assess the mediated effects of participation itself on longer term outcomes using a complier average causal effect (CACE) estimation framework. This article considers power analysis…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Myoung-jae Lee; Goeun Lee; Jin-young Choi – Sociological Methods & Research, 2025
A linear model is often used to find the effect of a binary treatment D on a noncontinuous outcome Y with covariates X. Particularly, a binary Y gives the popular "linear probability model (LPM)," but the linear model is untenable if X contains a continuous regressor. This raises the question: what kind of treatment effect does the…
Descriptors: Probability, Least Squares Statistics, Regression (Statistics), Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Adam N. Glynn; Miguel R. Rueda; Julian Schuessler – Sociological Methods & Research, 2024
Post-instrument covariates are often included as controls in instrumental variable (IV) analyses to address a violation of the exclusion restriction. However, we show that such analyses are subject to biases unless strong assumptions hold. Using linear constant-effects models, we present asymptotic bias formulas for three estimators (with and…
Descriptors: Causal Models, Statistical Inference, Error of Measurement, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Sarah E. Robertson; Jon A. Steingrimsson; Issa J. Dahabreh – Evaluation Review, 2024
When planning a cluster randomized trial, evaluators often have access to an enumerated cohort representing the target population of clusters. Practicalities of conducting the trial, such as the need to oversample clusters with certain characteristics in order to improve trial economy or support inferences about subgroups of clusters, may preclude…
Descriptors: Randomized Controlled Trials, Generalization, Inferences, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Peter Schochet – Society for Research on Educational Effectiveness, 2024
Random encouragement designs are randomized controlled trials (RCTs) that test interventions aimed at increasing participation in a program or activity whose take up is not universal. In these RCTs, instead of randomizing individuals or clusters directly into treatment and control groups to participate in a program or activity, the randomization…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Ting Ye; Ted Westling; Lindsay Page; Luke Keele – Grantee Submission, 2024
The clustered observational study (COS) design is the observational study counterpart to the clustered randomized trial. In a COS, a treatment is assigned to intact groups, and all units within the group are exposed to the treatment. However, the treatment is non-randomly assigned. COSs are common in both education and health services research. In…
Descriptors: Nonparametric Statistics, Identification, Causal Models, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Yuejin Zhou; Wenwu Wang; Tao Hu; Tiejun Tong; Zhonghua Liu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Causal mediation analysis is a popular approach for investigating whether the effect of an exposure on an outcome is through a mediator to better understand the underlying causal mechanism. In recent literature, mediation analysis with multiple mediators has been proposed for continuous and dichotomous outcomes. In contrast, methods for mediation…
Descriptors: Regression (Statistics), Causal Models, Evaluation Methods, Vignettes
Peer reviewed Peer reviewed
Direct linkDirect link
Oscar Clivio; Avi Feller; Chris Holmes – Grantee Submission, 2024
Reweighting a distribution to minimize a distance to a target distribution is a powerful and flexible strategy for estimating a wide range of causal effects, but can be challenging in practice because optimal weights typically depend on knowledge of the underlying data generating process. In this paper, we focus on design-based weights, which do…
Descriptors: Evaluation Methods, Causal Models, Error of Measurement, Guidelines
Peer reviewed Peer reviewed
Direct linkDirect link
Dae Woong Ham; Luke Miratrix – Grantee Submission, 2024
The consequence of a change in school leadership (e.g., principal turnover) on student achievement has important implications for education policy. The impact of such an event can be estimated via the popular Difference in Difference (DiD) estimator, where those schools with a turnover event are compared to a selected set of schools that did not…
Descriptors: Trend Analysis, Faculty Mobility, Academic Achievement, Principals
Peer reviewed Peer reviewed
Direct linkDirect link
Youmi Suk – Journal of Educational and Behavioral Statistics, 2024
Machine learning (ML) methods for causal inference have gained popularity due to their flexibility to predict the outcome model and the propensity score. In this article, we provide a within-group approach for ML-based causal inference methods in order to robustly estimate average treatment effects in multilevel studies when there is cluster-level…
Descriptors: Artificial Intelligence, Causal Models, Statistical Inference, Maximum Likelihood Statistics
Previous Page | Next Page ยป
Pages: 1  |  2