NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wendy Chan – Asia Pacific Education Review, 2024
As evidence from evaluation and experimental studies continue to influence decision and policymaking, applied researchers and practitioners require tools to derive valid and credible inferences. Over the past several decades, research in causal inference has progressed with the development and application of propensity scores. Since their…
Descriptors: Probability, Scores, Causal Models, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Roderick J. Little; James R. Carpenter; Katherine J. Lee – Sociological Methods & Research, 2024
Missing data are a pervasive problem in data analysis. Three common methods for addressing the problem are (a) complete-case analysis, where only units that are complete on the variables in an analysis are included; (b) weighting, where the complete cases are weighted by the inverse of an estimate of the probability of being complete; and (c)…
Descriptors: Foreign Countries, Probability, Robustness (Statistics), Responses
Peer reviewed Peer reviewed
Direct linkDirect link
Xinhe Wang; Ben B. Hansen – Society for Research on Educational Effectiveness, 2024
Background: Clustered randomized controlled trials are commonly used to evaluate the effectiveness of treatments. Frequently, stratified or paired designs are adopted in practice. Fogarty (2018) studied variance estimators for stratified and not clustered experiments and Schochet et. al. (2022) studied that for stratified, clustered RCTs with…
Descriptors: Causal Models, Randomized Controlled Trials, Computation, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Sarah E. Robertson; Jon A. Steingrimsson; Issa J. Dahabreh – Evaluation Review, 2024
When planning a cluster randomized trial, evaluators often have access to an enumerated cohort representing the target population of clusters. Practicalities of conducting the trial, such as the need to oversample clusters with certain characteristics in order to improve trial economy or support inferences about subgroups of clusters, may preclude…
Descriptors: Randomized Controlled Trials, Generalization, Inferences, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Mortaza Jamshidian; Parsa Jamshidian – Journal of Statistics and Data Science Education, 2024
Using software to teach statistical inference in introductory courses opens the door for methods and practices that are more conceptually appealing to students. With an increasing number of fields requiring competency in statistics including data science, natural and social sciences, public health and more, it is crucial that we as instructors…
Descriptors: Computer Software, Computer Assisted Instruction, Teaching Methods, Statistics Education