Publication Date
| In 2026 | 0 |
| Since 2025 | 36 |
Descriptor
Source
Author
| Abdulrahman Alshimai | 1 |
| Adish Singla | 1 |
| Ahmad Samed Al-Adwan | 1 |
| Alexandra Thompson | 1 |
| Ananya Rao | 1 |
| Anna Rechtácková | 1 |
| Anqi Xu | 1 |
| Anthony Serapiglia | 1 |
| Antonio Rodrigo dos Santos… | 1 |
| Arwa Ahmed Qasem | 1 |
| Ayad Aldaijy | 1 |
| More ▼ | |
Publication Type
| Reports - Research | 34 |
| Journal Articles | 33 |
| Tests/Questionnaires | 5 |
| Speeches/Meeting Papers | 3 |
| Reports - Descriptive | 1 |
| Reports - Evaluative | 1 |
Education Level
| Higher Education | 36 |
| Postsecondary Education | 36 |
| Secondary Education | 1 |
Audience
Location
| China | 3 |
| Taiwan | 2 |
| Brazil | 1 |
| Czech Republic | 1 |
| Europe | 1 |
| Germany (Berlin) | 1 |
| Hungary | 1 |
| Kansas | 1 |
| New Zealand | 1 |
| North Carolina | 1 |
| Spain | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Leah Bidlake; Eric Aubanel; Daniel Voyer – ACM Transactions on Computing Education, 2025
Research on mental model representations developed by programmers during parallel program comprehension is important for informing and advancing teaching methods including model-based learning and visualizations. The goals of the research presented here were to determine: how the mental models of programmers change and develop as they learn…
Descriptors: Schemata (Cognition), Programming, Computer Science Education, Coding
Jihae Suh; Kyuhan Lee; Jaehwan Lee – Education and Information Technologies, 2025
Artificial Intelligence (AI) has rapidly emerged as a powerful tool with the potential to enhance learning environments. However, effective use of new technologies in education requires a good understanding of the technology and good design for its use. Generative AI such as ChatGPT requires particularly well-designed instructions due to its ease…
Descriptors: Programming, Computer Science Education, Artificial Intelligence, Technology Uses in Education
Domicián Máté; Judit T. Kiss; Mária Csernoch – Education and Information Technologies, 2025
The impact of cognitive biases, particularly biased self-assessment, on learning outcomes and decision-making in higher education is of great significance. This study delves into the confluence of cognitive biases and user experience in spreadsheet programming as a crucial IT skill across various academic disciplines. Through a quantitative…
Descriptors: Programming, Spreadsheets, Computer Science Education, STEM Education
Wei Zhang; Xinyao Zeng; Lingling Song – Education and Information Technologies, 2025
Computational thinking (CT) assessment is crucial for testing the effectiveness of CT skills development. However, the exploration of CT assessment in the context of text-based programming is in its initial stages. The intrinsic relationship between the core skills of text-based programming and the core elements of CT isn't analyzed in depth in…
Descriptors: Mental Computation, Programming, College Students, Evaluation
Muntasir Hoq; Ananya Rao; Reisha Jaishankar; Krish Piryani; Nithya Janapati; Jessica Vandenberg; Bradford Mott; Narges Norouzi; James Lester; Bita Akram – International Educational Data Mining Society, 2025
In Computer Science (CS) education, understanding factors contributing to students' programming difficulties is crucial for effective learning support. By identifying specific issues students face, educators can provide targeted assistance to help them overcome obstacles and improve learning outcomes. While identifying sources of struggle, such as…
Descriptors: Computer Science Education, Programming, Misconceptions, Error Patterns
Chih-Yueh Chou; Wei-Han Chen – Educational Technology & Society, 2025
Studies have shown that students have different help-seeking behavior patterns and tendencies and furthermore, that students with certain help-seeking behavior patterns and tendencies may have poor performance (i.e., at-risk students). This study applied an educational data mining approach, including clustering and classification, to analyze…
Descriptors: Student Behavior, Help Seeking, Problem Solving, Information Retrieval
Hacer Güner; Erkan Er – Education and Information Technologies, 2025
As being more prevalent in educational settings, understanding the impact of artificial intelligence tools on student behaviors and interactions has become crucial. In this regard, this study investigates the dynamic interactions between students and ChatGPT in programming learning, focusing on how different instructional interventions influence…
Descriptors: Artificial Intelligence, Technology Uses in Education, Programming, Training
Molly Domino; Bob Edmison; Stephen H. Edwards; Rifat Sabbir Mansur; Alexandra Thompson; Clifford A. Shaffer – Computer Science Education, 2025
Background and Context: Self-regulated learning (SRL) skills are critical aspect of learning to program and are predictive of academic success. Early college students often struggle to use these skills, but can improve when given targeted instruction. However, it is not yet clear what skills are best to prioritize. Objective: We seek to create a…
Descriptors: Metacognition, Programming, Computer Science Education, College Students
Anna Rechtácková; Radek Pelánek; Tomáš Effenberger – ACM Transactions on Computing Education, 2025
Code quality is a critical aspect of programming, as high-quality code is easier to maintain, and code maintenance constitutes the majority of software costs. Consequently, code quality should be emphasized in programming education. While previous research has identified numerous code quality defects commonly made by students, the current state…
Descriptors: Programming, Computer Science Education, Error Patterns, Automation
Ibrahim Albluwi; Raghda Hriez; Raymond Lister – ACM Transactions on Computing Education, 2025
Explain-in-Plain-English (EiPE) questions are used by some researchers and educators to assess code reading skills. EiPE questions require students to briefly explain (in plain English) the purpose of a given piece of code, without restating what the code does line-by-line. The premise is that novices who can explain the purpose of a piece of code…
Descriptors: Questioning Techniques, Programming, Computer Science Education, Student Evaluation
Nilüfer Atman Uslu; Aytug Onan – Education and Information Technologies, 2025
Understanding the emotions experienced by programming students, particularly concerning gender and education level, is increasingly critical. However, only limited research has used text data to examine these differences within the context of programming education and emotions. This study aims to determine programming students' emotions and any…
Descriptors: Programming, Psychological Patterns, Student Attitudes, Secondary School Students
Kevin Slonka; Matthew North; Neelima Bhatnagar; Anthony Serapiglia – Information Systems Education Journal, 2025
Continuing to fill the literature gap, this research replicated and expands a prior study of student performance in database normalization in an introductory database course. The data was collected from four different universities, each having different prerequisite courses for their database course. Student performance on a database normalization…
Descriptors: Required Courses, Academic Achievement, Information Systems, Databases
Shao-Heng Ko; Kristin Stephens-Martinez – ACM Transactions on Computing Education, 2025
Background: Academic help-seeking benefits students' achievement, but existing literature either studies important factors in students' selection of all help resources via self-reported surveys or studies their help-seeking behavior in one or two separate help resources via actual help-seeking records. Little is known about whether computing…
Descriptors: Computer Science Education, College Students, Help Seeking, Student Behavior
Maciej Pankiewicz; Yang Shi; Ryan S. Baker – International Educational Data Mining Society, 2025
Knowledge Tracing (KT) models predicting student performance in intelligent tutoring systems have been successfully deployed in several educational domains. However, their usage in open-ended programming problems poses multiple challenges due to the complexity of the programming code and a complex interplay between syntax and logic requirements…
Descriptors: Algorithms, Artificial Intelligence, Models, Intelligent Tutoring Systems
Dominic Lohr; Hieke Keuning; Natalie Kiesler – Journal of Computer Assisted Learning, 2025
Background: Feedback as one of the most influential factors for learning has been subject to a great body of research. It plays a key role in the development of educational technology systems and is traditionally rooted in deterministic feedback defined by experts and their experience. However, with the rise of generative AI and especially large…
Descriptors: College Students, Programming, Artificial Intelligence, Feedback (Response)

Peer reviewed
Direct link
