Publication Date
| In 2026 | 0 |
| Since 2025 | 9 |
Descriptor
Source
| International Educational… | 4 |
| Journal of Science Education… | 2 |
| Discover Education | 1 |
| Education and Information… | 1 |
| Malaysian Online Journal of… | 1 |
Author
| Adelina Asmawi | 1 |
| Ahmed Attia | 1 |
| Akif Avcu | 1 |
| Ali Sartaz Khan | 1 |
| Arman Bakhtiari | 1 |
| Chahé Nerguizian | 1 |
| Chengyang Qian | 1 |
| Chris Piech | 1 |
| Dorottya Demszky | 1 |
| Hyeongdon Moon | 1 |
| Hyun-Joo Kim | 1 |
| More ▼ | |
Publication Type
| Reports - Research | 8 |
| Journal Articles | 5 |
| Speeches/Meeting Papers | 4 |
| Information Analyses | 1 |
Education Level
| Higher Education | 2 |
| Postsecondary Education | 2 |
| Elementary Education | 1 |
| Grade 5 | 1 |
| Grade 6 | 1 |
| Grade 7 | 1 |
| Grade 8 | 1 |
| Intermediate Grades | 1 |
| Junior High Schools | 1 |
| Middle Schools | 1 |
| Secondary Education | 1 |
| More ▼ | |
Audience
Location
| California | 1 |
| District of Columbia | 1 |
| Ohio | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Jae-Sang Han; Hyun-Joo Kim – Journal of Science Education and Technology, 2025
This study explores the potential to enhance the performance of convolutional neural networks (CNNs) for automated scoring of kinematic graph answers through data augmentation using Deep Convolutional Generative Adversarial Networks (DCGANs). By developing and fine-tuning a DCGAN model to generate high-quality graph images, we explored its…
Descriptors: Performance, Automation, Scoring, Models
Akif Avcu – Malaysian Online Journal of Educational Technology, 2025
This scope-review presents the milestones of how Hierarchical Rater Models (HRMs) become operable to used in automated essay scoring (AES) to improve instructional evaluation. Although essay evaluations--a useful instrument for evaluating higher-order cognitive abilities--have always depended on human raters, concerns regarding rater bias,…
Descriptors: Automation, Scoring, Models, Educational Assessment
Kangkang Li; Chengyang Qian; Xianmin Yang – Education and Information Technologies, 2025
In learnersourcing, automatic evaluation of student-generated content (SGC) is significant as it streamlines the evaluation process, provides timely feedback, and enhances the objectivity of grading, ultimately supporting more effective and efficient learning outcomes. However, the methods of aggregating students' evaluations of SGC face the…
Descriptors: Student Developed Materials, Educational Quality, Automation, Artificial Intelligence
Juliette Woodrow; Sanmi Koyejo; Chris Piech – International Educational Data Mining Society, 2025
High-quality feedback requires understanding of a student's work, insights into what concepts would help them improve, and language that matches the preferences of the specific teaching team. While Large Language Models (LLMs) can generate coherent feedback, adapting these responses to align with specific teacher preferences remains an open…
Descriptors: Feedback (Response), Artificial Intelligence, Teacher Attitudes, Preferences
Michel C. Desmarais; Arman Bakhtiari; Ovide Bertrand Kuichua Kandem; Samira Chiny Folefack Temfack; Chahé Nerguizian – International Educational Data Mining Society, 2025
We propose a novel method for automated short answer grading (ASAG) designed for practical use in real-world settings. The method combines LLM embedding similarity with a nonlinear regression function, enabling accurate prediction from a small number of expert-graded responses. In this use case, a grader manually assesses a few responses, while…
Descriptors: Grading, Automation, Artificial Intelligence, Natural Language Processing
Adelina Asmawi; Md. Saiful Alam – Discover Education, 2025
In the evolving techno-educational landscape, it is crucial to reimagine transformative pedagogies based on techno-teacher collaboration to revolutionize teaching effectiveness and efficiency. Although the cutting-edge generative AI tool, Chat GPT, is speculated to be a revolutionary CALL (computer-assisted language learning) tool for teaching…
Descriptors: Reading Instruction, Teaching Methods, Computer Assisted Instruction, Instructional Effectiveness
Tingting Li; Kevin Haudek; Joseph Krajcik – Journal of Science Education and Technology, 2025
Scientific modeling is a vital educational practice that helps students apply scientific knowledge to real-world phenomena. Despite advances in AI, challenges in accurately assessing such models persist, primarily due to the complexity of cognitive constructs and data imbalances in educational settings. This study addresses these challenges by…
Descriptors: Artificial Intelligence, Scientific Concepts, Models, Automation
Hyeongdon Moon; Richard Lee Davis; Seyed Parsa Neshaei; Pierre Dillenbourg – International Educational Data Mining Society, 2025
Knowledge tracing models have enabled a range of intelligent tutoring systems to provide feedback to students. However, existing methods for knowledge tracing in learning sciences are predominantly reliant on statistical data and instructor-defined knowledge components, making it challenging to integrate AI-generated educational content with…
Descriptors: Artificial Intelligence, Natural Language Processing, Automation, Information Management
Ali Sartaz Khan; Tolulope Ogunremi; Ahmed Attia; Dorottya Demszky – International Educational Data Mining Society, 2025
Speaker diarization, the process of identifying "who spoke when" in audio recordings, is essential for understanding classroom dynamics. However, classroom settings present distinct challenges, including poor recording quality, high levels of background noise, overlapping speech, and the difficulty of accurately capturing children's…
Descriptors: Audio Equipment, Acoustics, Classroom Environment, Models

Peer reviewed
Direct link
