NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20260
Since 202510
Audience
Location
Spain1
Laws, Policies, & Programs
Assessments and Surveys
Program for International…1
What Works Clearinghouse Rating
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sourabh Balgi; Adel Daoud; Jose M. Peña; Geoffrey T. Wodtke; Jesse Zhou – Sociological Methods & Research, 2025
Social science theories often postulate systems of causal relationships among variables, which are commonly represented using directed acyclic graphs (DAGs). As non-parametric causal models, DAGs require no assumptions about the functional form of the hypothesized relationships. Nevertheless, to simplify empirical evaluation, researchers typically…
Descriptors: Graphs, Causal Models, Statistical Inference, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Bernard J. Koch; Tim Sainburg; Pablo Geraldo Bastías; Song Jiang; Yizhou Sun; Jacob G. Foster – Sociological Methods & Research, 2025
This primer systematizes the emerging literature on causal inference using deep neural networks under the potential outcomes framework. It provides an intuitive introduction to building and optimizing custom deep learning models and shows how to adapt them to estimate/predict heterogeneous treatment effects. It also discusses ongoing work to…
Descriptors: Artificial Intelligence, Statistical Inference, Causal Models, Social Science Research
Peer reviewed Peer reviewed
Ken Frank; Guan Saw; Qinyun Lin; Ran Xu; Joshua Rosenberg; Spiro Maroulis; Bret Staudt Willet – Grantee Submission, 2025
This is a practical guide for applying the Impact Threshold for a Confounding Variable and the Robustness of Inference to Replacement using the konfound packages in Stata and R as well as the R-shiny app. It includes motivation worked examples, and tutorials.
Descriptors: Robustness (Statistics), Statistical Inference, Programming Languages, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Maria-Paz Fernandez – Society for Research on Educational Effectiveness, 2025
As educational research increasingly emphasizes identifying effective interventions through rigorous causal methods, the role of implementation in determining a program's impact has gained renewed significance. Despite the long-standing recognition that implementation varies across contexts and influences outcomes (Berman & McLaughlin, 1974;…
Descriptors: Statistical Analysis, Educational Research, Intervention, Program Implementation
Peer reviewed Peer reviewed
Direct linkDirect link
Julian Schuessler; Peter Selb – Sociological Methods & Research, 2025
Directed acyclic graphs (DAGs) are now a popular tool to inform causal inferences. We discuss how DAGs can also be used to encode theoretical assumptions about nonprobability samples and survey nonresponse and to determine whether population quantities including conditional distributions and regressions can be identified. We describe sources of…
Descriptors: Data Collection, Graphs, Error of Measurement, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Charlotte Z. Mann; Adam C. Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2025
Combining observational and experimental data for causal inference can improve treatment effect estimation. However, many observational data sets cannot be released due to data privacy considerations, so one researcher may not have access to both experimental and observational data. Nonetheless, a small amount of risk of disclosing sensitive…
Descriptors: Causal Models, Statistical Analysis, Privacy, Risk
Peer reviewed Peer reviewed
Direct linkDirect link
Leslie Rutkowski; David Rutkowski – Journal of Creative Behavior, 2025
The Programme for International Student Assessment (PISA) introduced creative thinking as an innovative domain in 2022. This paper examines the unique methodological issues in international assessments and the implications of measuring creative thinking within PISA's framework, including stratified sampling, rotated form designs, and a distinct…
Descriptors: Creativity, Creative Thinking, Measurement, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Jaime León; Fernando Martínez-Abad – Large-scale Assessments in Education, 2025
Background: Grade retention is an educational aspect that concerns teachers, families, and experts. It implies an economic cost for families, as well as a personal cost for the student, who is forced to study one more year. The objective of the study was to evaluate the effect of course repetition on math, science and reading competencies, and…
Descriptors: Grade Repetition, Academic Achievement, Scores, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Mikyung Shin; Jiyeon Park – Society for Research on Educational Effectiveness, 2025
Background: A single-case design focuses on individual performance and measures the causal relationships between variables (Kazdin, 2019). This experimental design enables researchers to measure the learning behaviors of individual participants over time across phases and assess the effectiveness of an instructional strategy in improving or…
Descriptors: Causal Models, Statistical Inference, Statistical Data, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Joshua B. Gilbert; Luke W. Miratrix; Mridul Joshi; Benjamin W. Domingue – Journal of Educational and Behavioral Statistics, 2025
Analyzing heterogeneous treatment effects (HTEs) plays a crucial role in understanding the impacts of educational interventions. A standard practice for HTE analysis is to examine interactions between treatment status and preintervention participant characteristics, such as pretest scores, to identify how different groups respond to treatment.…
Descriptors: Causal Models, Item Response Theory, Statistical Inference, Psychometrics