Publication Date
| In 2026 | 0 |
| Since 2025 | 174 |
Descriptor
Source
Author
| Alejandrina Cristia | 2 |
| Cicyn Riantoni | 2 |
| Jason M. Harley | 2 |
| Jufrida Jufrida | 2 |
| Keerat Grewal | 2 |
| Khairul Anwar | 2 |
| Maria Cutumisu | 2 |
| Matthew Moreno | 2 |
| Wawan Kurniawan | 2 |
| Aaron Wolf | 1 |
| Abdelali Zakrani | 1 |
| More ▼ | |
Publication Type
Education Level
Audience
| Teachers | 4 |
| Researchers | 3 |
| Policymakers | 1 |
| Practitioners | 1 |
| Students | 1 |
Location
| China | 8 |
| Turkey | 6 |
| Australia | 3 |
| Canada | 3 |
| Portugal | 3 |
| United States | 3 |
| Europe | 2 |
| Indonesia | 2 |
| Morocco | 2 |
| South Korea | 2 |
| Spain | 2 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| Program for International… | 2 |
| Trends in International… | 1 |
What Works Clearinghouse Rating
Pallavi Singh; Phat K. Huynh; Dang Nguyen; Trung Q. Le; Wilfrido Moreno – IEEE Transactions on Learning Technologies, 2025
In organizational and academic settings, the strategic formation of teams is paramount, necessitating an approach that transcends conventional methodologies. This study introduces a novel application of multicriteria integer programming (MCIP), which simultaneously accommodates multiple criteria, thereby innovatively addressing the complex task of…
Descriptors: Teamwork, Group Dynamics, Research Design, Models
Gulnara Z. Karimova; Yevgeniya D. Kim; Amir Shirkhanbeik – Education and Information Technologies, 2025
This exploratory study investigates the convergence of marketing communications and AI-powered technology in higher education, adopting a perspective on student interactions with generative AI tools. Through a comprehensive content analysis of learners' responses, we employed a blend of manual scrutiny, Python-generated Word Cloud, and Latent…
Descriptors: Artificial Intelligence, Marketing, Student Attitudes, Higher Education
Long Zhang; Khe Foon Hew – Education and Information Technologies, 2025
Although self-regulated learning (SRL) plays an important role in supporting online learning performance, the lack of student self-regulation skills poses a persistent problem to many educators. Recommender systems have the potential to promote SRL by delivering personalized feedback and tailoring learning strategies to meet individual learners'…
Descriptors: Independent Study, Electronic Learning, Online Courses, Artificial Intelligence
Jean-Paul Fox – Journal of Educational and Behavioral Statistics, 2025
Popular item response theory (IRT) models are considered complex, mainly due to the inclusion of a random factor variable (latent variable). The random factor variable represents the incidental parameter problem since the number of parameters increases when including data of new persons. Therefore, IRT models require a specific estimation method…
Descriptors: Sample Size, Item Response Theory, Accuracy, Bayesian Statistics
Pei Boon Ooi; Graeme Wilkinson – British Journal of Guidance & Counselling, 2025
The advent of generative Artificial Intelligence (AI) systems, such as large language model chatbots, is likely to have a significant impact in psychotherapy and counselling in the future. In this paper we consider the current state of AI in psychotherapy and counselling and the likely evolution of this field. We examine the ethical codes of…
Descriptors: Ethics, Artificial Intelligence, Governance, Computer Mediated Communication
Tenzin Doleck; Pedram Agand; Dylan Pirrotta – Education and Information Technologies, 2025
As is rapidly becoming clear, data science increasingly permeates many aspects of life. Educational research recognizes the importance and complexity of learning data science. In line with this imperative, there is a growing need to investigate the factors that influence student performance in data science tasks. In this paper, we aimed to apply…
Descriptors: Prediction, Data Science, Performance, Data Analysis
R. K. Kapila Vani; P. Jayashree – Education and Information Technologies, 2025
Emotions of learners are fundamental and significant in e-learning as they encourage learning. Machine learning models are presented in the literature to look at how emotions may affect e-learning results that are improved and optimized. Nevertheless, the models that have been suggested so far are appropriate for offline mode, whereby data for…
Descriptors: Electronic Learning, Psychological Patterns, Artificial Intelligence, Models
Pamela Weber Harris; Cameron Harris, Contributor – Corwin, 2025
Author Pam Harris argues that teaching real math--math that is free of distortions--will reach more students more effectively and result in deeper understanding and longer retention. This book is about teaching undistorted math using the kinds of mental reasoning that mathematicians do. Memorization tricks and algorithms meant to make math…
Descriptors: Mathematics Instruction, Mathematical Logic, Mathematics Skills, Addition
Fatma Merve Mustafaoglu; Fatma Alkan – Science Education International, 2025
Recycling waste is essential to mitigate environmental damage caused by human activity. Environmentally responsible behaviors, shaped during early ages, are closely linked to environmental attitudes, as demonstrated by prior research. This study aims to predict middle school students' recycling behaviors using machine learning algorithms. A…
Descriptors: Middle School Students, Recycling, Student Behavior, Artificial Intelligence
Zuchao Shen; Walter Leite; Huibin Zhang; Jia Quan; Huan Kuang – Journal of Experimental Education, 2025
When designing cluster-randomized trials (CRTs), one important consideration is determining the proper sample sizes across levels and treatment conditions to cost-efficiently achieve adequate statistical power. This consideration is usually addressed in an optimal design framework by leveraging the cost structures of sampling and optimizing the…
Descriptors: Randomized Controlled Trials, Feasibility Studies, Research Design, Sample Size
Yin Kiong Hoh – American Biology Teacher, 2025
Artificial intelligence (AI) encompasses the science and engineering behind creating intelligent machines capable of tasks that typically rely on human intelligence, such as learning, reasoning, decision-making, and problem-solving. By analyzing vast amounts of data, identifying patterns, and making predictions that were once impossible, AI has…
Descriptors: Artificial Intelligence, Biological Sciences, Computer Software, Algorithms
Mirjam Sophia Glessmer; Rachel Forsyth – Teaching & Learning Inquiry, 2025
Generative AI tools (GenAI) are increasingly used for academic tasks, including qualitative data analysis for the Scholarship of Teaching and Learning (SoTL). In our practice as academic developers, we are frequently asked for advice on whether this use for GenAI is reliable, valid, and ethical. Since this is a new field, we have not been able to…
Descriptors: Artificial Intelligence, Research Methodology, Data Analysis, Scholarship
Guiyun Feng; Honghui Chen – Education and Information Technologies, 2025
Data mining has been successfully and widely utilized in educational information systems, and an important research field has been formed, which is educational data mining. Process mining inherits the characteristics of data mining which can not only use historical data in the system to analyze learning behavior and predict academic performance,…
Descriptors: Educational Research, Artificial Intelligence, Data Use, Algorithms
Mohammad Arif Ul Alam; Geeta Verma; Eumie Jhong; Justin Barber; Ashis Kumer Biswas – International Educational Data Mining Society, 2025
The growing demand for microcredentials in education and workforce development necessitates scalable, accurate, and fair assessment systems for both soft and hard skills based on students' lived experience narratives. Existing approaches struggle with the complexities of hierarchical credentialing and the mitigation of algorithmic bias related to…
Descriptors: Microcredentials, Sex, Ethnicity, Artificial Intelligence
Jinfang Yao; Shaidatul Akma Adi Kasuma; Hisham Noori Hussain Al-Hashimy – Journal of Interdisciplinary Studies in Education, 2025
Through this paper, we aim to explore the ethical considerations related to machine translation, with a focus on eliminating bias and enhancing cultural sensitivity. By considering the experiences of individual participants, we aim to strengthen the ability of algorithms to adapt to diverse cultural environments, thereby contributing to the…
Descriptors: Translation, Automation, Ethics, Cultural Relevance

Peer reviewed
Direct link
