NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Forrow, Lauren; Starling, Jennifer; Gill, Brian – Regional Educational Laboratory Mid-Atlantic, 2023
The Every Student Succeeds Act requires states to identify schools with low-performing student subgroups for Targeted Support and Improvement or Additional Targeted Support and Improvement. Random differences between students' true abilities and their test scores, also called measurement error, reduce the statistical reliability of the performance…
Descriptors: At Risk Students, Low Achievement, Error of Measurement, Measurement Techniques
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Regional Educational Laboratory Mid-Atlantic, 2023
This Snapshot highlights key findings from a study that used Bayesian stabilization to improve the reliability (long-term stability) of subgroup proficiency measures that the Pennsylvania Department of Education (PDE) uses to identify schools for Targeted Support and Improvement (TSI) or Additional Targeted Support and Improvement (ATSI). The…
Descriptors: At Risk Students, Low Achievement, Error of Measurement, Measurement Techniques
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Regional Educational Laboratory Mid-Atlantic, 2023
The "Stabilizing Subgroup Proficiency Results to Improve the Identification of Low-Performing Schools" study used Bayesian stabilization to improve the reliability (long-term stability) of subgroup proficiency measures that the Pennsylvania Department of Education (PDE) uses to identify schools for Targeted Support and Improvement (TSI)…
Descriptors: At Risk Students, Low Achievement, Error of Measurement, Measurement Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Cummings, Kelli D.; Stoolmiller, Michael L.; Baker, Scott K.; Fien, Hank; Kame'enui, Edward J. – Reading and Writing: An Interdisciplinary Journal, 2015
We present a method for data-based decision making at the school level using student achievement data. We demonstrate the potential of a national assessment database [i.e., the University of Oregon DIBELS Data System (DDS)] to provide comparative levels of school-level data on average student achievement gains. Through the DDS as a data source,…
Descriptors: Academic Achievement, Formative Evaluation, Achievement Gains, Bayesian Statistics
Lockwood, J. R.; Castellano, Katherine E. – Educational and Psychological Measurement, 2017
Student Growth Percentiles (SGPs) increasingly are being used in the United States for inferences about student achievement growth and educator effectiveness. Emerging research has indicated that SGPs estimated from observed test scores have large measurement errors. As such, little is known about "true" SGPs, which are defined in terms…
Descriptors: Item Response Theory, Correlation, Student Characteristics, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Lockwood, J. R.; McCaffrey, Daniel F. – Journal of Educational and Behavioral Statistics, 2014
A common strategy for estimating treatment effects in observational studies using individual student-level data is analysis of covariance (ANCOVA) or hierarchical variants of it, in which outcomes (often standardized test scores) are regressed on pretreatment test scores, other student characteristics, and treatment group indicators. Measurement…
Descriptors: Error of Measurement, Scores, Statistical Analysis, Computation
Zajonc, Tristan – ProQuest LLC, 2012
Effective policymaking requires understanding the causal effects of competing proposals. Relevant causal quantities include proposals' expected effect on different groups of recipients, the impact of policies over time, the potential trade-offs between competing objectives, and, ultimately, the optimal policy. This dissertation studies causal…
Descriptors: Public Policy, Policy Formation, Bayesian Statistics, Economic Development