Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 10 |
Descriptor
Source
Author
Choi, Kilchan | 1 |
Forrow, Lauren | 1 |
Gentry, Marcia | 1 |
Gill, Brian | 1 |
Goshu, Ayele Taye | 1 |
Hodges, Jaret | 1 |
Huang, Hung-Yu | 1 |
Jenkins, Frank | 1 |
Johnson, Matthew S. | 1 |
Kim, Jinok | 1 |
Konstantopoulos, Spyros | 1 |
More ▼ |
Publication Type
Reports - Research | 8 |
Journal Articles | 7 |
Reports - Descriptive | 3 |
Education Level
Elementary Education | 11 |
Middle Schools | 6 |
Junior High Schools | 5 |
Secondary Education | 5 |
Early Childhood Education | 3 |
High Schools | 3 |
Primary Education | 3 |
Grade 8 | 2 |
Intermediate Grades | 2 |
Grade 1 | 1 |
Grade 3 | 1 |
More ▼ |
Audience
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
Early Childhood Longitudinal… | 1 |
Indiana Statewide Testing for… | 1 |
Iowa Tests of Basic Skills | 1 |
National Assessment of… | 1 |
Students Evaluation of… | 1 |
Trends in International… | 1 |
What Works Clearinghouse Rating
Shen, Ting; Konstantopoulos, Spyros – Journal of Experimental Education, 2022
Large-scale education data are collected via complex sampling designs that incorporate clustering and unequal probability of selection. Multilevel models are often utilized to account for clustering effects. The probability weighted approach (PWA) has been frequently used to deal with the unequal probability of selection. In this study, we examine…
Descriptors: Data Collection, Educational Research, Hierarchical Linear Modeling, Bayesian Statistics
Forrow, Lauren; Starling, Jennifer; Gill, Brian – Regional Educational Laboratory Mid-Atlantic, 2023
The Every Student Succeeds Act requires states to identify schools with low-performing student subgroups for Targeted Support and Improvement or Additional Targeted Support and Improvement. Random differences between students' true abilities and their test scores, also called measurement error, reduce the statistical reliability of the performance…
Descriptors: At Risk Students, Low Achievement, Error of Measurement, Measurement Techniques
Regional Educational Laboratory Mid-Atlantic, 2023
This Snapshot highlights key findings from a study that used Bayesian stabilization to improve the reliability (long-term stability) of subgroup proficiency measures that the Pennsylvania Department of Education (PDE) uses to identify schools for Targeted Support and Improvement (TSI) or Additional Targeted Support and Improvement (ATSI). The…
Descriptors: At Risk Students, Low Achievement, Error of Measurement, Measurement Techniques
Regional Educational Laboratory Mid-Atlantic, 2023
The "Stabilizing Subgroup Proficiency Results to Improve the Identification of Low-Performing Schools" study used Bayesian stabilization to improve the reliability (long-term stability) of subgroup proficiency measures that the Pennsylvania Department of Education (PDE) uses to identify schools for Targeted Support and Improvement (TSI)…
Descriptors: At Risk Students, Low Achievement, Error of Measurement, Measurement Techniques
Leckie, George – Journal of Educational and Behavioral Statistics, 2018
The traditional approach to estimating the consistency of school effects across subject areas and the stability of school effects across time is to fit separate value-added multilevel models to each subject or cohort and to correlate the resulting empirical Bayes predictions. We show that this gives biased correlations and these biases cannot be…
Descriptors: Value Added Models, Reliability, Statistical Bias, Computation
Choi, Kilchan; Kim, Jinok – Journal of Educational and Behavioral Statistics, 2019
This article proposes a latent variable regression four-level hierarchical model (LVR-HM4) that uses a fully Bayesian approach. Using multisite multiple-cohort longitudinal data, for example, annual assessment scores over grades for students who are nested within cohorts within schools, the LVR-HM4 attempts to simultaneously model two types of…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Longitudinal Studies, Cohort Analysis
Sebro, Negusse Yohannes; Goshu, Ayele Taye – Journal of Education and Learning, 2017
This study aims to explore Bayesian multilevel modeling to investigate variations of average academic achievement of grade eight school students. A sample of 636 students is randomly selected from 26 private and government schools by a two-stage stratified sampling design. Bayesian method is used to estimate the fixed and random effects. Input and…
Descriptors: Foreign Countries, Hierarchical Linear Modeling, Academic Achievement, Secondary School Students
Hodges, Jaret; McIntosh, Jason; Gentry, Marcia – Journal of Advanced Academics, 2017
High-potential students from low-income families are at an academic disadvantage compared with their more affluent peers. To address this issue, researchers have suggested novel approaches to mitigate gaps in student performance, including out-of-school enrichment programs. Longitudinal mixed effects modeling was used to analyze the growth of…
Descriptors: After School Programs, Enrichment Activities, Academic Achievement, High Achievement
May, Henry – Society for Research on Educational Effectiveness, 2014
Interest in variation in program impacts--How big is it? What might explain it?--has inspired recent work on the analysis of data from multi-site experiments. One critical aspect of this problem involves the use of random or fixed effect estimates to visualize the distribution of impact estimates across a sample of sites. Unfortunately, unless the…
Descriptors: Educational Research, Program Effectiveness, Research Problems, Computation
Huang, Hung-Yu; Wang, Wen-Chung – Educational and Psychological Measurement, 2014
In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The…
Descriptors: Item Response Theory, Hierarchical Linear Modeling, Computation, Test Reliability
Johnson, Matthew S.; Jenkins, Frank – ETS Research Report Series, 2005
Large-scale educational assessments such as the National Assessment of Educational Progress (NAEP) sample examinees to whom an exam will be administered. In most situations the sampling design is not a simple random sample and must be accounted for in the estimating model. After reviewing the current operational estimation procedure for NAEP, this…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, National Competency Tests, Sampling