NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Shi, Dingjing; Tong, Xin – Sociological Methods & Research, 2022
This study proposes a two-stage causal modeling with instrumental variables to mitigate selection bias, provide correct standard error estimates, and address nonnormal and missing data issues simultaneously. Bayesian methods are used for model estimation. Robust methods with Student's "t" distributions are used to account for nonnormal…
Descriptors: Bayesian Statistics, Monte Carlo Methods, Computer Software, Causal Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Dong, Yi; Biswas, Gautam – International Educational Data Mining Society, 2017
This paper discusses a novel approach for developing more refined and accurate learner models from student data collected from Open Ended Learning Environments (OELEs). OELEs provide students choice in how they go about constructing solutions to problems, and students exhibit a variety of learning behaviors in such environments. Building accurate…
Descriptors: Student Behavior, Models, Monte Carlo Methods, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Hung-Yu; Wang, Wen-Chung – Educational and Psychological Measurement, 2014
In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The…
Descriptors: Item Response Theory, Hierarchical Linear Modeling, Computation, Test Reliability