NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Shen, Ting; Konstantopoulos, Spyros – Journal of Experimental Education, 2022
Large-scale education data are collected via complex sampling designs that incorporate clustering and unequal probability of selection. Multilevel models are often utilized to account for clustering effects. The probability weighted approach (PWA) has been frequently used to deal with the unequal probability of selection. In this study, we examine…
Descriptors: Data Collection, Educational Research, Hierarchical Linear Modeling, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Foster, Colin; Martin, David – Teaching Statistics: An International Journal for Teachers, 2016
We analyse the "two-dice horse race" task often used in lower secondary school, in which two ordinary dice are thrown repeatedly and each time the sum of the scores determines which horse (numbered 1 to 12) moves forwards one space.
Descriptors: Statistics, Markov Processes, Probability, Statistical Significance
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Feiming; Cohen, Allan; Bottge, Brian; Templin, Jonathan – Educational and Psychological Measurement, 2016
Latent transition analysis (LTA) was initially developed to provide a means of measuring change in dynamic latent variables. In this article, we illustrate the use of a cognitive diagnostic model, the DINA model, as the measurement model in a LTA, thereby demonstrating a means of analyzing change in cognitive skills over time. An example is…
Descriptors: Statistical Analysis, Change, Thinking Skills, Measurement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kaplan, David; Chen, Jianshen – Society for Research on Educational Effectiveness, 2013
The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…
Descriptors: Bayesian Statistics, Models, Probability, Monte Carlo Methods