NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bosch, Nigel – Journal of Educational Data Mining, 2021
Automatic machine learning (AutoML) methods automate the time-consuming, feature-engineering process so that researchers produce accurate student models more quickly and easily. In this paper, we compare two AutoML feature engineering methods in the context of the National Assessment of Educational Progress (NAEP) data mining competition. The…
Descriptors: Accuracy, Learning Analytics, Models, National Competency Tests
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sao Pedro, Michael A.; Baker, Ryan S. J. d.; Gobert, Janice D. – Grantee Submission, 2013
When validating assessment models built with data mining, generalization is typically tested at the student-level, where models are tested on new students. This approach, though, may fail to find cases where model performance suffers if other aspects of those cases relevant to prediction are not well represented. We explore this here by testing if…
Descriptors: Educational Research, Data Collection, Data Analysis, Generalizability Theory
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sao Pedro, Michael A.; Gobert, Janice D.; Baker, Ryan S. – Grantee Submission, 2014
We explore in this paper if automated scaffolding delivered via a pedagogical agent within a simulation can help students acquire data collection inquiry skills. Our initial analyses revealed that such scaffolding was effective for helping students who initially did not know two specific skills, designing controlled experiments and testing stated…
Descriptors: Automation, Scaffolding (Teaching Technique), Intelligent Tutoring Systems, Data Collection
Gobert, Janice Darlene; Sao Pedro, Michael A.; Baker, Ryan S. – Grantee Submission, 2012
In this paper we explored whether engaging in two inquiry skills associated with data collection, designing controlled experiments and testing stated hypotheses, within microworlds for one physical science domain (density) impacted the acquisition of inquiry skills in another domain (phase change). To do so, we leveraged educational data mining…
Descriptors: Data Collection, Learning Analytics, Inquiry, Science Process Skills
Barnes, Tiffany, Ed.; Desmarais, Michel, Ed.; Romero, Cristobal, Ed.; Ventura, Sebastian, Ed. – International Working Group on Educational Data Mining, 2009
The Second International Conference on Educational Data Mining (EDM2009) was held at the University of Cordoba, Spain, on July 1-3, 2009. EDM brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large data sets to answer educational research questions. The increase in instrumented…
Descriptors: Data Analysis, Educational Research, Conferences (Gatherings), Foreign Countries
Feng, Mingyu; Beck, Joseph E.; Heffernan, Neil T. – International Working Group on Educational Data Mining, 2009
A basic question of instructional interventions is how effective it is in promoting student learning. This paper presents a study to determine the relative efficacy of different instructional strategies by applying an educational data mining technique, learning decomposition. We use logistic regression to determine how much learning is caused by…
Descriptors: Data Analysis, Intelligent Tutoring Systems, Sampling, Statistical Inference